Turn off MathJax
Article Contents
LIU Yang,LUO Ning,LI Jianmin,et al. The genesis of uranium reservoirs in the upper Cretaceous Saihan Formation in the central Ulanqab Depression of the Erlian Basin and their constraints on uranium mineralization[J]. Bulletin of Geological Science and Technology,2025,44(6):1-15 doi: 10.19509/j.cnki.dzkq.tb20250202
Citation: LIU Yang,LUO Ning,LI Jianmin,et al. The genesis of uranium reservoirs in the upper Cretaceous Saihan Formation in the central Ulanqab Depression of the Erlian Basin and their constraints on uranium mineralization[J]. Bulletin of Geological Science and Technology,2025,44(6):1-15 doi: 10.19509/j.cnki.dzkq.tb20250202

The genesis of uranium reservoirs in the upper Cretaceous Saihan Formation in the central Ulanqab Depression of the Erlian Basin and their constraints on uranium mineralization

doi: 10.19509/j.cnki.dzkq.tb20250202
More Information
  • Objective

    The uranium reservoir is the foundation of sandstone-type uranium mineralization. Therefore, studying the genesis of uranium reservoirs is the essential for understanding uranium mineralization processes and evaluating uranium mineralization potential.

    Methods

    This paper conducts a genetic analysis of the uranium reservoir in the Saihan Formation in the central part of the Ulanqab Depression in the Erlian Basin based on analyses of the sand dispersal system, detrital components of sediments, heavy mineral assemblages, and elemental composition.

    Results

    The study found that the average contents of quartz, feldspar, and rock fragments in the sandstone are 51%, 27%, and 12%, respectively. The average values of Fe2O3T/K2O and SiO2/Al2O3 are 0.12 and 8.61, respectively, with an average CIA value of 61.83. The average Eu/Eu* value is 0.75. A total of 23 major heavy minerals were identified in the sandstone, with average ATi and ZGi values of 35.2 and 48.8, respectively, and ZTR values ranging between 24.2% and 71.6%.

    Conclusion

    These characteristics indicate that the sandstone types in the Saihan Formation are feldspathic sandstone and lithic sandstone, with the parent rocks primarily composed of intermediate-acidic magmatic rocks. The chemical weathering intensity of the parent rocks in the source area is moderate, reflecting strong chemical weathering under warm and humid conditions. The tectonic setting of the parent rocks in the source area is mainly continental margin, with the provenance primarily derived from the Sonid Uplift. Based on comprehensive analysis, it is concluded that during the Permian-Triassic and Cretaceous-Jurassic periods, intermediate-acidic granites formed in the Sonid Uplift under continental margin tectonic setting. Under warm and humid climatic conditions, these rocks underwent intense weathering, and the resulting detrital materials were transported by fluids into the basin, forming the uranium-bearing sandstone of the upper Saihan Formation.The uranium was enriched, through uranium mineralization processesand formed sandstone-type uranium deposits.

     

  • loading
  • [1]
    LEEDER M R. Sedimentary basins: Tectonic recorders of sediment discharge from drainage catchments[J]. Earth Surface Processes and Landforms, 1997, 22(3): 229-237. doi: 10.1002/(SICI)1096-9837(199703)22:3<229::AID-ESP750>3.0.CO;2-F
    [2]
    MEADE R H. Sources, sinks, and storage of river sediment in the Atlantic drainage of the United States[J]. The Journal of Geology, 1982, 90(3): 235-252. doi: 10.1086/628677
    [3]
    SØMME T O, JACKSON C A, VAKSDAL M. Source-to-sink analysis of ancient sedimentary systems using a subsurface case study from the Møre-Trøndelag area of southern Norway: Part 1–Depositional setting and fan evolution[J]. Basin Research, 2013, 25(5): 489-511. doi: 10.1111/bre.12013
    [4]
    张龙, 吴柏林, 刘池洋, 等. 鄂尔多斯盆地北部砂岩型铀矿直罗组物源分析及其铀成矿意义[J]. 地质学报, 2016, 90(12): 3441-3453.

    ZHANG L, WU B L, LIU C Y, et al. Provenance analysis of the Zhiluo Formation in the sandstone-hosted uranium deposits of the northern Ordos Basin and implications for uranium mineralization[J]. Acta Geologica Sinica, 2016, 90(12): 3441-3453. (in Chinese with English abstract
    [5]
    BERRYMAN K, MARDEN M, PALMER A, et al. The post-glacial downcutting history in the Waihuka tributary of Waipaoa River, Gisborne district: Implications for tectonics and landscape evolution in the Hikurangi subduction margin, New Zealand[J]. Marine Geology, 2010, 270(1/2/3/4): 55-71.
    [6]
    CARTER L, ORPIN A R, KUEHL S A. From mountain source to ocean sink–the passage of sediment across an active margin, Waipaoa Sedimentary System, New Zealand[J]. Marine Geology, 2010, 270(1/2/3/4): 1-10.
    [7]
    LOWE D G, SYLVESTER P J, ENACHESCU M E. Provenance and paleodrainage patterns of Upper Jurassic and Lower Cretaceous synrift sandstones in the Flemish Pass Basin, offshore Newfoundland, east coast of Canada[J]. AAPG Bulletin, 2011, 95(8): 1295-1320. doi: 10.1306/12081010005
    [8]
    朱华汇, 陈家旭, 张佼杨, 等. 歧口凹陷滨海斜坡沙一中亚段烃源岩地球化学特征及沉积环境[J]. 地质科技通报, 2025, 44(3): 43-56.

    ZHU H H, CHEN J X, ZHANG J Y, et al. Geochemical characteristics and sedimentary environment of source rock in the Middle Section of Es1 in the Binhai slope, Qikou Sag[J]. Bulletin of Geological Science and Technology, 2025, 44(3): 43-56. (in Chinese with English abstract
    [9]
    师淑娟, 代永刚, 陈军威, 等. 冀北地区火山岩型隐伏铀矿地球化学勘查方法试验研究[J]. 地质科技情报, 2018, 37(2): 103-108.

    SHI S J, DAI Y G, CHEN J W, et al. Experimental study of geochemical exploration methods for volcanic-type concealed uranium deposit in northern Hebei[J]. Geological Science and Technology Information, 2018, 37(2): 103-108. (in Chinese with English abstract
    [10]
    涂颖, 蒋孝君, 任志勇, 等. 鄂尔多斯盆地苏台庙地区砂岩地球化学环境和常量元素特征及对铀成矿的指示意义[J]. 地质与勘探, 2022, 58(1): 61-72.

    TU Y, JIANG X J, REN Z Y, et al. Geochemical environment and major elements characteristics of sandstones in the Sutaimiao area, Ordos Basin and their implications for uranium mineralization[J]. Geology and Exploration, 2022, 58(1): 61-72. (in Chinese with English abstract
    [11]
    刘华健, 徐增连, 汤超, 等. 二连盆地马尼特坳陷赛汉组上段赋铀沉积物源特征及其对砂岩型铀成矿的启示[J]. 地球科学, 2024, 49(10): 3589-3609.

    LIU H J, XU Z L, TANG C, et al. Provenance characteristics of uranium-bearing sediments of Upper Saihan Formation and its implications for sandstone-type uranium mineralization in Manite Depression, Erlian Basin[J]. Earth Science, 2024, 49(10): 3589-3609. (in Chinese with English abstract
    [12]
    李盛富, 陈洪德, 周剑, 等. 沉积盆地源−汇过程及其演化对砂岩型铀矿成矿的制约: 以新疆伊犁盆地南缘蒙其古尔铀矿床为例[J]. 铀矿地质, 2016, 32(3): 137-145.

    LI S F, CHEN H D, ZHOU J, et al. Source convergence process and its restriction on sandstone type uranium metallization: A case study of Mengqiguer uranium deposit in the southern margin of Yili Basin, Xinjiang[J]. Uranium Geology, 2016, 32(3): 137-145. (in Chinese with English abstract
    [13]
    贺锋, 刘鑫扬, 刘卫红, 等. 鄂尔多斯盆地西南缘砂岩型铀矿“源−汇”系统研究[J]. 铀矿地质, 2022, 38(4): 671-682.

    HE F, LIU X Y, LIU W H, et al. Analysis on source to convergence systems of sandstone type uranium deposit in the southwestern margin of Ordos Basin[J]. Uranium Geology, 2022, 38(4): 671-682. (in Chinese with English abstract
    [14]
    彭虎. 松辽盆地东南缘砂岩型铀矿关键控矿要素时空耦合配置与“源−汇”系统重建[D]. 武汉: 中国地质大学(武汉), 2023.

    PENG H. Spatio-temporal coupling configuration for key elements of ore-controlling and "source-sink"system reconstruction of sandstone-type uranium deposit in southeastern margin of Songliao Basin[D]. Wuhan: China University of Geosciences (Wuhan), 2023. (in Chinese with English abstract
    [15]
    刘波, 彭云彪, 康世虎, 等. 二连盆地巴赛齐赛汉组含铀古河谷沉积特征及铀成矿流体动力学[J]. 矿物岩石地球化学通报, 2018, 37(2): 316-325.

    LIU B, PENG Y B, KANG S H, et al. Depositional characteristics and uranium metallogenic fluid dynamics of uranium bearing paleo-valley of the Saihan Formation in Basaiqi, Erlian Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(2): 316-325. (in Chinese with English abstract
    [16]
    谢惠丽, 李西得, 刘武生, 等. 二连盆地乔尔古−齐哈地区赛汉组上段砂体成因分析及找矿意义[J]. 铀矿地质, 2020, 36(5): 354-361.

    XIE H L, LI X D, LIU W S, et al. Genesis analysis of sandstone of the Upper Member of Saihan Formation and its prospecting significance in the Qiaoergu-Qiha area of Erlian Basin[J]. Uranium Geology, 2020, 36(5): 354-361. (in Chinese with English abstract
    [17]
    NIE F J, YAN Z B, FENG Z B, et al. Genetic models and exploration implication of the paleochannel sandstone-type uranium deposits in the Erlian Basin, North China: A review and comparative study[J]. Ore Geology Reviews, 2020, 127: 1-16.
    [18]
    秦彦伟. 二连盆地巴赛齐地区下白垩统赛汉组古河谷氧化带特征与铀成矿[D]. 长春: 吉林大学, 2022.

    QIN Y W. Characteristics of paleo-valley oxidation zone and uranium mineralization of Lower Cretaceous Saihan Formation in Basaiqi area, Erlian Basin[D]. Changchun: Jilin University, 2022. (in Chinese with English abstract
    [19]
    CHENG Y H, WANG S Y, JIN R S, et al. Global Miocene tectonics and regional sandstone-style uranium mineralization[J]. Ore Geology Reviews, 2019, 106: 238-250. doi: 10.1016/j.oregeorev.2019.02.003
    [20]
    梁宏斌, 吴冲龙, 李林波, 等. 二连盆地层序地层单元统一划分及格架层序地层学[J]. 地球科学, 2010, 35(1): 97-106.

    LIANG H B, WU C L, LI L B, et al. Unifying division of sequence stratigraphy unit and framework sequence stratigraphy of Erlian Basin[J]. Earth Science, 2010, 35(1): 97-106. (in Chinese with English abstract
    [21]
    BONNETTI C, MALARTRE F, HUAULT V, et al. Sedimentology, stratigraphy and palynological occurrences of the Late Cretaceous Erlian Formation, Erlian Basin, Inner Mongolia, People's Republic of China[J]. Cretaceous Research, 2014, 48: 177-192. doi: 10.1016/j.cretres.2013.09.013
    [22]
    漆家福, 赵贤正, 李先平, 等. 二连盆地早白垩世断陷分布及其与基底构造的关系[J]. 地学前缘, 2015, 22(3): 118-128.

    QI J F, ZHAO X Z, LI X P, et al. The distribution of Early Cretaceous faulted-sags and their relationship with basement structure within Erlian Basin[J]. Earth Science Frontiers, 2015, 22(3): 118-128. (in Chinese with English abstract
    [23]
    BONNETTI C, CUNEY M, MALARTRE F, et al. The Nuheting deposit, Erlian Basin, NE China: Synsedimentary to diagenetic uranium mineralization[J]. Ore Geology Reviews, 2015, 69: 118-139. doi: 10.1016/j.oregeorev.2015.02.010
    [24]
    程银行, 金若时, Michel CUNEY, 等. 中国北方盆地大规模铀成矿作用: 地层篇[J]. 地质学报, 2024, 98(7): 1953-1976.

    CHENG Y H, JIN R S, CUNEY M, et al. The strata constraint on large scale sandstone-type uranium mineralization in Meso-Cenozoic basins, northern China[J]. Acta Geologica Sinica, 2024, 98(7): 1953-1976. (in Chinese with English abstract
    [25]
    聂逢君, 李满根, 严兆彬, 等. 内蒙古二连盆地砂岩型铀矿目的层赛汉组分段与铀矿化[J]. 地质通报, 2015, 34(10): 1952-1963.

    NIE F J, LI M G, YAN Z B, et al. Segmentation of the target layer Saihan Formation and sandstone-type uranium mineralization in Erlian Basin[J]. Geological Bulletin of China, 2015, 34(10): 1952-1963. (in Chinese with English abstract
    [26]
    鲁超, 焦养泉, 彭云彪, 等. 二连盆地马尼特坳陷西部幕式裂陷作用对铀成矿的影响[J]. 地质学报, 2016, 90(12): 3483-3491.

    LU C, JIAO Y Q, PENG Y B, et al. Effect of the episodic rifting in the western Manite Depression in Erlian Basin on sandstone-type uranium mineralization[J]. Acta Geologica Sinica, 2016, 90(12): 3483-3491. (in Chinese with English abstract
    [27]
    WANG X M, JIAO Y Q, DU Y S, et al. REE mobility and Ce anomaly in bauxite deposit of WZD area, northern Guizhou, China[J]. Journal of Geochemical Exploration, 2013, 133: 103-117. doi: 10.1016/j.gexplo.2013.08.009
    [28]
    ZHU Z J, GUO F S, et al. Heavy mineral distribution regularity of Paleogene detrital rocks in Lanping Basin, Yunnan Province[J]. Geological Bulletin of China, 2017, 36(2/3): 199-208.
    [29]
    ZHANG Y L, JIA X T, WANG Z Q, et al. New insights into provenance of Early Cambrian Xiannüdong Formation in the Micangshan area: Evidence from sedimentology, heavy mineral and detrital zircon chronology[J]. Acta Geologica Sinica, 2018(9): 1918-1935.
    [30]
    TAYLOR S R, MCLENNAN S M. The continental crust: Its composition and evolution[J]. The Journal of Geology, 1985, 94(4): 57-72.
    [31]
    MCLENNAN S M, TAYLOR S R. Sedimentary rocks and crustal evolution: Tectonic setting and secular trends[J]. The Journal of Geology, 1991, 99(1): 1-21. doi: 10.1086/629470
    [32]
    RUDNICK R L, Gao S. Composition of the continental crust[M]. Oxford, United Kingdom: Pergamon, 2003: 1-64.
    [33]
    BLATT H, MIDDLETON G, MURRAY R. Origin of sedimentary rocks[M]. 2nd edition. New Jersey, America: Prentice-Hall, 1980: 18-266.
    [34]
    NESBITT H W, YOUNG G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534. doi: 10.1016/0016-7037(84)90408-3
    [35]
    PETTIJOHN F J, POTTER P E, SIEVER R. Sand and sandstone[M]. New York, NY: Springer, 1987.
    [36]
    HERRON M M. Geochemical classification of terrigenous sands and shales from core or log data[J]. SEPM Journal of Sedimentary Research, 1988, 58(5): 820-829.
    [37]
    ROLLINSON H R. Using geochemical data: Evaluation, presentation, interpretation[M]. Harlow, Essex, England: Longman Scientific & Technical, 1993.
    [38]
    裴先治, 胡楠, 刘成军, 等. 东昆仑南缘哥日卓托地区马尔争组砂岩碎屑组成、地球化学特征与物源构造环境分析[J]. 地质论评, 2015, 61(2): 307-323.

    PEI X Z, HU N, LIU C J, et al. Detrital composition, geochemical characteristics and provenance analysis for the Maerzheng Formation sandstone in Gerizhuotuo area, southern margin of East Kunlun region[J]. Geological Review, 2015, 61(2): 307-323. (in Chinese with English abstract
    [39]
    ROSER B P, KORSCH R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 1988, 67(1/2): 119-139.
    [40]
    RIDGE G H G D L. Provenance and depositional setting of Paleozoic chert and argillite, sierra Nevada, California[J]. SEPM Journal of Sedimentary Research, 1996, 66(1): 107-118
    [41]
    杨海军, 蔡振忠, 李勇, 等. 塔里木盆地富满地区吐木休克组烃源岩有机地球化学特征及其油气勘探意义[J]. 地质科技通报, 2024, 43(3): 81-93.

    YANG H J, CAI Z Z, LI Y, et al. Organic geochemical characters of source rock and significance for exploration of the Tumuxiuke Formation in Fuman area, Tarim Basin[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 81-93. (in Chinese with English abstract
    [42]
    ROSER B P, KORSCH R J. Plate tectonics and geochemical composition of sandstones: A discussion[J]. The Journal of Geology, 1985, 93(1): 81-84. doi: 10.1086/628921
    [43]
    BHATIA M R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control[J]. Sedimentary Geology, 1985, 45(1/2): 97-113.
    [44]
    TANG C, XU Z L, DUAN M, et al. Genetic model of the Luhai sandstone-type uranium deposit in the Erlian Basin, Inner Mongolia[J]. Minerals, 2025, 15(3): 294. doi: 10.3390/min15030294
    [45]
    FLOYD P A, WINCHESTER J A, PARK R G. Geochemistry and tectonic setting of Lewisian clastic metasediments from the Early Proterozoic Loch Maree Group of Gairloch, NW Scotland[J]. Precambrian Research, 1989, 45(1/2/3): 203-214.
    [46]
    MCLENNAN S M, HEMMING S, MCDANIEL D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[M]. Geological Society of America, 1993: 21-40.
    [47]
    王国茹, 陈洪德, 朱志军, 等. 川东南−湘西地区志留系小河坝组砂岩中重矿物特征及地质意义[J]. 成都理工大学学报(自然科学版), 2011, 38(1): 7-14.

    WANG G R, CHEN H D, ZHU Z J, et al. Characteristics and geological implications of heavy minerals in Lower Silurian Xiaoheba Formation sandstones in Southeast Sichuan-West Hunan[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2011, 38(1): 7-14. (in Chinese with English abstract
    [48]
    林洪, 李凤杰, 李磊, 等. 柴达木盆地北缘古近系重矿物特征及物源分析[J]. 天然气地球科学, 2014, 25(4): 532-541.

    LIN H, LI F J, LI L, et al. Characteristics of Paleogene heavy mineral and its source in northern margin of Qaidam Basin[J]. Natural Gas Geoscience, 2014, 25(4): 532-541. (in Chinese with English abstract
    [49]
    FEDO C M, WAYNE NESBITT H, YOUNG G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
    [50]
    JIAN P, LIU D Y, KRÖNER A, et al. Evolution of a Permian intraoceanic arc–trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia[J]. Lithos, 2010, 118(1/2): 169-190.
    [51]
    SONG S G, WANG M M, XU X, et al. Ophiolites in the Xing'an-Inner Mongolia accretionary belt of the CAOB: Implications for two cycles of seafloor spreading and accretionary orogenic events[J]. Tectonics, 2015, 34(10): 2221-2248. doi: 10.1002/2015TC003948
    [52]
    刘建峰, 李锦轶, 赵硕, 等. 中亚造山带东南部晚古生代−早中生代地壳增生和古亚洲洋演化: 来自内蒙古东南部林西−东乌旗地区岩浆岩的证据[J]. 岩石学报, 2022, 38(8): 2181-2215. doi: 10.18654/1000-0569/2022.08.02

    LIU J F, LI J Y, ZHAO S, et al. Crustal accretion and Paleo-Asian Ocean evolution during Late Paleozoic-Early Mesozoic in southeastern Central Asian Orogenic Belt: Evidence from magmatism in Linxi-Dongwuqi area, southeastern Inner Mongolia[J]. Acta Petrologica Sinica, 2022, 38(8): 2181-2215. (in Chinese with English abstract doi: 10.18654/1000-0569/2022.08.02
    [53]
    WU Z J, HAN X Z, LIN Z X, et al. Tectonic, sedimentary, and climate evolution of Meso-Cenozoic basins in North China and its significance of coal accumulation and uranium mineralization[J]. Geotectonica et Metallogenia, 2020, 44(4): 710-724.
    [54]
    徐强. 二连盆地脑木根凹陷早白垩世构造变形及演化过程[J]. 中国煤炭地质, 2022, 34(3): 31-37.

    XU Q. Early Cretaceous structural deformation and evolutionary process in Nomgen Sag, Erenhot Basin[J]. Coal Geology of China, 2022, 34(3): 31-37. (in Chinese with English abstract
    [55]
    唐军. 苏左旗南部瑙木浑尼地区中三叠世二长花岗岩年代学与地球化学研究及其地质意义[D]. 石家庄: 河北地质大学, 2019.

    TANG J. The geochronological, geochemical researches and tectonic implications of Middle Triassic monzonitic granites in the Naomuhunni area, southern Sonid Zuoqi[D]. Shijiazhuang: Hebei GEO University, 2019. (in Chinese with English abstract
    [56]
    张晓飞, 滕超, 周毅, 等. 内蒙古西乌旗地区晚二叠世−早中三叠世花岗岩年代学和地球化学特征及构造意义[J]. 地质学报, 2019, 93(8): 1903-1927.

    ZHANG X F, TENG C, ZHOU Y, et al. Geochronology and geochemistry of the Late Permian to Early-Middle Triassic granites in Xiwu Banner, Inner Mongolia and its tectonic significance[J]. Acta Geologica Sinica, 2019, 93(8): 1903-1927. (in Chinese with English abstract
    [57]
    王帅, 李英杰, 孔星蕊, 等. 古亚洲洋东段洋盆闭合与后造山伸展: 来自内蒙古苏尼特右旗中三叠世A型花岗岩的证据[J]. 岩石矿物学杂志, 2022, 41(3): 555-568.

    WANG S, LI Y J, KONG X R, et al. Ocean basin closure and post orogenic extension in the eastern Paleo-Asian Ocean: Evidence from Middle Triassic A-type granite in Sonid Youqi, Inner Mongolia[J]. Acta Petrologica et Mineralogica, 2022, 41(3): 555-568. (in Chinese with English abstract
    [58]
    张金带. 我国砂岩型铀矿成矿理论的创新和发展[J]. 铀矿地质, 2016, 32(6): 321-332.

    ZHANG J D. Innovation and development of metallogenic theory for sandstone type uranium deposit in China[J]. Uranium Geology, 2016, 32(6): 321-332. (in Chinese with English abstract
    [59]
    聂逢君, 夏菲, 严兆彬, 等. 二连盆地西部隆起区卫境岩体铀丢失与盆内铀矿成矿关系探讨[J]. 地球学报, 2022, 43(5): 616-632.

    NIE F J, XIA F, YAN Z B, et al. Study on uranium loss of Weijing granite and sandstone-type uranium mineralization in Erlian Basin[J]. Acta Geoscientica Sinica, 2022, 43(5): 616-632. (in Chinese with English abstract
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(48) PDF Downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return