Citation: | SHAO Zhiyuan,HE Jie,LIAO Yuantao,et al. Prediction of volcanic rock fractures based on conventional logging curves: A case study of the Mesozoic in the Bonan area, Bohai Bay Basin[J]. Bulletin of Geological Science and Technology,2025,44(5):81-93 doi: 10.19509/j.cnki.dzkq.tb20250144 |
Tectonic fractures play a significant role in enhancing the physical properties and hydrocarbon productivity of deep volcanic buried-hill reservoirs. Due to their strong heterogeneity, precise characterization of fracture density across different parts of the fault zone is required. In practical production, the high cost of core acquisition and imaging logging data motivates the use of a comprehensive fracture index (
A
In the Mesozoic volcanic rocks of the study area, the seven conventional logging curves show distinct responses in fracture-developed zones:
The
[1] |
徐长贵, 杨海风, 王清斌, 等. 火山岩油气藏勘探进展[J]. 地球科学, 2025, 50(2): 363-376.
XU C G, YANG H F, WANG Q B, et al. Progress in exploration of volcanic oil and gas reservoirs[J]. Earth Science, 2025, 50(2): 363-376. (in Chinese with English abstract
|
[2] |
胡见义, 陈英, 郑俊章. 东北亚天然气资源及其发展趋势[J]. 石油学报, 2003, 24(1): 1-8.
HU J Y, CHEN Y, ZHENG J Z. Natural gas resources and its development trend in Northeast Asia[J]. Acta Petrolei Sinica, 2003, 24(1): 1-8. (in Chinese with English abstract
|
[3] |
WANG X, ZENG J H, LIU B, et al. Insights into the wetting mechanisms in low-permeability sandstone reservoirs and its evolution processes: The Shahejie Formation in the Dongying Depression, Bohai Bay Basin[J]. Marine and Petroleum Geology, 2025, 171: 107179. doi: 10.1016/j.marpetgeo.2024.107179
|
[4] |
ZHOU X H, WANG D Y, YU H B, et al. Major controlling factors and hydrocarbon accumulation models of large-scale lithologic reservoirs in shallow strata around the Bozhong Sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2022, 49(4): 758-769. doi: 10.1016/S1876-3804(22)60308-2
|
[5] |
ZHANG X N, YAO Y B, ZHANG G B, et al. Natural fractures in a metamorphic buried hill reservoir, Bozhong 19-6 area, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2023, 155: 106402. doi: 10.1016/j.marpetgeo.2023.106402
|
[6] |
陆国超. 渤海湾盆地莱州湾凹陷南斜坡带中生界火山岩储层特征与分类评价[D]. 长春: 吉林大学, 2024.
LU G C. Characteristics and classification evaluation of Mesozoic volcanic reservoivs in the southern slope of Laizhouwan Sag, Bohai Bay Basin[D]. Changchun: Jilin University, 2024. (in Chinese with English abstract
|
[7] |
单玄龙, 徐长贵, 衣健, 等. 中国近海典型含油气盆地中生代岩浆活动与岩浆岩潜山油气藏[J]. 吉林大学学报(地球科学版), 2024, 54(6): 1773-1787.
SHAN X L, XU C G, YI J, et al. Mesozoic magmatic activities and hydrocarbon accumulations in magmatic buried hills in typical offshore oil and gas basins of China[J]. Journal of Jilin University (Earth Science Edition), 2024, 54(6): 1773-1787. (in Chinese with English abstract
|
[8] |
陈秀娟, 冯镇涛, 曾芙蓉, 等. 页岩地层测井岩性识别技术发展现状[J]. 新疆石油地质, 2024, 45(6): 742-752.
CHEN X J, FENG Z T, ZENG F R, et al. Development status of logging-based lithology identification technology for shale formations[J]. Xinjiang Petroleum Geology, 2024, 45(6): 742-752. (in Chinese with English abstract
|
[9] |
XU H R, JU W, NIU X B, et al. Prediction of natural fracture in shale oil reservoir based on R/S analysis and conventional logs[J]. Frontiers of Earth Science, 2021, 15(3): 705-718. doi: 10.1007/s11707-020-0843-z
|
[10] |
YANG C, HOU L H, YANG F, et al. Controlling factors of volcanic hydrocarbon reservoirs in Bohai Bay Basin, China[J]. Journal of Natural Gas Geoscience, 2017, 2(4): 219-228. doi: 10.1016/j.jnggs.2017.10.001
|
[11] |
YANG T, CUI R, CAO Y C, et al. Characteristics and diagenetic model of hyperpycnite reservoirs in the gentle slope of a lacustrine rift basin: A case study from the Third Member of the Eocene Shahejie Formation, Bonan Sag, Bohai Bay Basin, eastern China[J]. AAPG Bulletin, 2024, 108(11): 2093-2125. doi: 10.1306/07232423029
|
[12] |
王文华. 四川盆地西部二叠系火山岩岩性、岩相和储层控制因素研究[D]. 长春: 吉林大学, 2024.
WANG W H. Lithology, lithofacies and reservoir control factors of Permian volcanic rocks in western Sichuan Basin[D]. Changchun: Jilin University, 2024. (in Chinese with English abstract
|
[13] |
陈井胜, 李斌, 姚玉来, 等. 辽东北−吉南中生代火山岩地层与辽西义县组的对比[J]. 地质学报, 2016, 90(10): 2733-2746.
CHEN J S, LI B, YAO Y L, et al. Comparison between Mesozoic volcanic rock strata in northeast of Liaoning-south of Jilin and Yixian Formationg in west of Liaoning[J]. Acta Geologica Sinica, 2016, 90(10): 2733-2746. (in Chinese with English abstract
|
[14] |
潘玉啟, 黄志安, 吴子杰, 等. 辽宁阜新地区义县组火山岩特征及喷发旋回划分[J]. 地质与资源, 2014, 23(增刊1): 21-26.
PAN Y Q, HUANG Z A, WU Z J, et al. Characteristics of volcanic rocks and division of eruption cycles of the Yixian Formation in Fuxin, Liaoning Province[J]. Geology and Resources, 2014, 23(S1): 21-26. (in Chinese with English abstract
|
[15] |
吴庆勋, 王粤川, 韦阿娟, 等. 渤海海域中生代火山岩喷发旋回划分及与油气的关系[J]. 中国海上油气, 2017, 29(2): 18-26.
WU Q X, WANG Y C, WEI A J, et al. Division of the Mesozoic volcanic rock eruption cycle and its relationship with oil and gas in the Bohai Sea[J]. China Offshore Oil and Gas, 2017, 29(2): 18-26. (in Chinese with English abstract
|
[16] |
蔡冬梅, 叶涛, 鲁凤婷, 等. 渤海海域中生界火山岩岩相特征及其识别方法[J]. 岩性油气藏, 2018, 30(1): 112-120.
CAI D M, YE T, LU F T, et al. Lithofacies characteristics and identification methods of Mesozoic volcanic rocks in Bohai Sea[J]. Lithologic Reservoirs, 2018, 30(1): 112-120. (in Chinese with English abstract
|
[17] |
岳庆友. 渤中凹陷中生界火山岩成储机理及分布规律研究[D]. 长春: 吉林大学, 2021.
YUE Q Y. Formation mechanism and distribution of the Mesozoic volcanic reservoir in Bozhong Sag[D]. Changchun: Jilin University, 2021. (in Chinese with English abstract
|
[18] |
杨海风, 叶涛, 燕歌, 等. 渤中凹陷及周边地区中生界大中型火山岩油气田成藏条件及模式[J]. 中国海上油气, 2025, 37(1): 1-12.
YANG H F, YE T, YAN G, et al. Reservoir-forming conditions and models of large-and medium-sized Mesozoic volcanic oil and gas fields in the Bozhong Sag and its surrounding areas[J]. China Offshore Oil and Gas, 2025, 37(1): 1-12. (in Chinese with English abstract
|
[19] |
CHOI J H, EDWARDS P, KO K, et al. Definition and classification of fault damage zones: A review and a new methodological approach[J]. Earth-Science Reviews, 2016, 152: 70-87. doi: 10.1016/j.earscirev.2015.11.006
|
[20] |
QUEVEDO R, DE ANDRADE T J, SANTOS L, et al. Assessment of fault damage zones in carbonate rocks based on numerical and sensitivity analyses[J]. Tectonophysics, 2023, 864: 230023. doi: 10.1016/j.tecto.2023.230023
|
[21] |
BALSAMO F, CLEMENZI L, STORTI F, et al. Tectonic control on vein attributes and deformation intensity in fault damage zones affecting Natih Platform carbonates, Jabal Qusaybah, North Oman[J]. Journal of Structural Geology, 2019, 122: 38-57. doi: 10.1016/j.jsg.2019.02.009
|
[22] |
NUNES K, QUEVEDO R, ROEHL D, et al. Assessment of linking damage zones of geological faults through numerical modeling[J]. Journal of Structural Geology, 2025, 195: 105381. doi: 10.1016/j.jsg.2025.105381
|
[23] |
FOSSEN H, ROTEVATN A. Fault linkage and relay structures in extensional settings: A review[J]. Earth-Science Reviews, 2016, 154: 14-28. doi: 10.1016/j.earscirev.2015.11.014
|
[24] |
任梦怡, 范洪军, 陆国超, 等. 渤海莱州湾凹陷南斜坡中生界火山岩储层特征和控制因素[J]. 吉林大学学报(地球科学版), 2025, 55(1): 15-30.
REN M Y, FAN H J, LU G C, et al. Characteristics and controlling factors of Mesozoic volcanic rock reservoir in southern slope of Laizhou Bay Depression, Bohai Bay Basin[J]. Journal of Jilin University (Earth Science Edition), 2025, 55(1): 15-30. (in Chinese with English abstract
|
[25] |
STERLING J C L J L. Natural fractures in the spraberry formation, Midland Basin, Texas: The effects of mechanical stratigraphy on fracture variability and reservoir behavior[J]. AAPG Bulletin, 2002, 86(3): 505-524.
|
[26] |
ZENG L B, LI X Y. Fractures in sandstone reservoirs with ultra-low permeability: A case study of the Upper Triassic Yanchang Formation in the Ordos Basin, China[J]. AAPG Bulletin, 2009, 93(4): 461-477. doi: 10.1306/09240808047
|
[27] |
赖锦, 苏洋, 肖承文, 等. 地球物理测井在地质领域应用经典案例解析[J]. 地质科技通报, 2024, 43(5): 279-288.
LAI J, SU Y, XIAO C W, et al. Analysis of typical applications of geophysical well logs in geological fields[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 279-288. (in Chinese with English abstract
|
[28] |
孟玉净, 陈红汉, 赵彦超, 等. 鄂尔多斯盆地南部泾河油田延长组板内走滑断裂内部结构刻画[J]. 地球科学, 2023, 48(6): 2281-2293.
MENG Y J, CHEN H H, ZHAO Y C, et al. Characterization of architecture of intraplate strike-slip faults in Yanchang Formation of Jinghe oilfield in southern Ordos Basin[J]. Earth Science, 2023, 48(6): 2281-2293. (in Chinese with English abstract
|
[29] |
邓攀, 陈孟晋, 高哲荣, 等. 火山岩储层构造裂缝的测井识别及解释[J]. 石油学报, 2002, 23(6): 32-36. doi: 10.3321/j.issn:0253-2697.2002.06.007
DENG P, CHEN M J, GAO Z R, et al. Log response and explanation of structural fractures in volcanic rock reservoir[J]. Acta Petrolei Sinica, 2002, 23(6): 32-36. (in Chinese with English abstract doi: 10.3321/j.issn:0253-2697.2002.06.007
|
[30] |
刘粤蛟, 赖富强, 徐浩, 等. 基于测井曲线深程度耦合的页岩岩相智能识别方法[J]. 地质科技通报, 2025, 44(1): 308-320.
LIU Y J, LAI F Q, XU H, et al. Intelligent identification methods for shale lithology based on the coupling deeply of logging curves[J]. Bulletin of Geological Science and Technology, 2025, 44(1): 308-320. (in Chinese with English abstract
|
[31] |
张苗. 渤海海域潜山火山岩储层有效性测井评价方法研究: 以M构造为例[D]. 武汉: 长江大学, 2024.
ZHANG M. Investigation into the Bohai Sea's buried hill volcanic reservoir's efficient logging assessment method: An analysis of the M structure[D]. Wuhan: Yangtze University, 2024. (in Chinese with English abstract
|
[32] |
蒲俊伟, 罗彤彤, 陈维铭, 等. 利用常规测井曲线辅助探究深层页岩气井产量差异[J]. 石化技术, 2024, 31(12): 267-269.
PU J W, LUO T T, CHEN W M, et al. Using conventional logging curve to explore the production difference of deep shale gas wells[J]. Petrochemical Industry Technology, 2024, 31(12): 267-269. (in Chinese with English abstract
|
[33] |
WANG S, WANG G W, ZENG L B, et al. New method for logging identification of natural fractures in shale reservoirs: The Fengcheng Formation of the Mahu Sag, China[J]. Marine and Petroleum Geology, 2025, 176: 107346. doi: 10.1016/j.marpetgeo.2025.107346
|
[34] |
AGUILERA R. Analysis of naturally fractured reservoirs from sonic and resistivity logs[J]. Journal of Petroleum Technology, 1974, 26(11): 1233-1238. doi: 10.2118/4398-PA
|
[35] |
王奇. 综合概率指数法识别裂缝型储层[J]. 中国石油和化工标准与质量, 2012, 32(1): 134.
WANG Q. Identification of fractured reservoirs by comprehensive probability index method[J]. China Petroleum and Chemical Standard and Quality, 2012, 32(1): 134. (in Chinese with English abstract
|
[36] |
邹雪峰. 碳酸盐岩裂缝识别及定量评价[D]. 武汉: 长江大学, 2013.
ZOU X F. The fractured carbonate identification and quantitative evaluation[D]. Wuhan: Yangtze University, 2013. (in Chinese with English abstract
|
[37] |
LYU W Y, ZENG L B, LIU Z Q, et al. Fracture responses of conventional logs in tight-oil sandstones: A case study of the Upper Triassic Yanchang Formation in Southwest Ordos Basin, China[J]. AAPG Bulletin, 2016, 100(9): 1399-1417. doi: 10.1306/04041615129
|
[38] |
李逸. 测井裂缝识别方法研究及软件开发[D]. 北京: 中国石油大学(北京), 2017.
LI Y. Methodology of fracture identification and software development based on log data[D]. Beijing: China University of Petroleum (Beijing), 2017. (in Chinese with English abstract
|
[39] |
TOKHMECHI B, MEMARIAN H, NOUBARI H A, et al. A novel approach proposed for fractured zone detection using petrophysical logs[J]. Journal of Geophysics and Engineering, 2009, 6(4): 365-373. doi: 10.1088/1742-2132/6/4/004
|
[40] |
MENG Y J, CHEN H H, LUO Y, et al. Architecture of intraplate strike-slip fault zones in the Yanchang Formation, southern Ordos Basin, China: Characterization and implications for their control on hydrocarbon enrichment[J]. Journal of Structural Geology, 2023, 170: 104851. doi: 10.1016/j.jsg.2023.104851
|
[41] |
RAFIQ A, EATON D W, MCDOUGALL A, et al. Reservoir characterization using microseismic facies analysis integrated with surface seismic attributes[J]. Interpretation, 2016, 4(2): 167-181. doi: 10.1190/INT-2015-0109.1
|
[42] |
孟玉净, 骆杨, 赵彦超, 等. 泾河油田走滑断裂带长8−长6段致密砂岩构造成岩作用及控储分析[J]. 地质科技通报, 2025, 44(1): 74-89.
MENG Y J, LUO Y, ZHAO Y C, et al. Structural diagenesis and reservoir control analysis of tight sandstone in the strike-slip fault zones of the Chang 8 to Chang 6 members in the Jinghe oilfield[J]. Bulletin of Geological Science and Technology, 2025, 44(1): 74-89. (in Chinese with English abstract
|