Turn off MathJax
Article Contents
LUO Sheng,HUANG Zhengyang,LI Zheng. Earthquake nucleation simulation:A case study of the 2023 MW 7.8 Kahramanmaraş earthquake, Turkey[J]. Bulletin of Geological Science and Technology,2025,44(6):1-13 doi: 10.19509/j.cnki.dzkq.tb20250104
Citation: LUO Sheng,HUANG Zhengyang,LI Zheng. Earthquake nucleation simulation:A case study of the 2023 MW 7.8 Kahramanmaraş earthquake, Turkey[J]. Bulletin of Geological Science and Technology,2025,44(6):1-13 doi: 10.19509/j.cnki.dzkq.tb20250104

Earthquake nucleation simulation:A case study of the 2023 MW 7.8 Kahramanmaraş earthquake, Turkey

doi: 10.19509/j.cnki.dzkq.tb20250104
More Information
  • Objective

    The preferential rupture of splay faults in continental transform fault systems during strike-slip earthquakes remains a widely debated issue. Deciphering the underlying mechanism is crucial for advancing the understanding of earthquake physics and improving seismic hazard assessment.

    Methods

    This study introduces a novel finite element framework to simulate fault nucleation, which identifies nucleation zones based on the interaction between background tectonic stress and fault geometry. Within this framework, faults are treated as frictional contact between two blocks. Stress-strain conditions derived from quasi-static simulations serve as initial conditions for dynamic rupture simulations, with the abrupt transition from static to dynamic friction modeled. The region of maximum slip obtained in the first step of the dynamic simulation corresponds to the area of minimum static friction in the quasi-static model, thereby defining the earthquake nucleation zone. Simultaneously, we investigate the key factors impacting the nucleation site of the 2023 MW 7.8 Kahramanmaraş earthquake using a simplified 3D elastic-plastic model.

    Results

    The results show the high accuracy of the proposed earthquake nucleation simulation method and reveal that the mechanical coupling between the splay Nurdağı Fault (NF) and the main fault exhibits nonlinear characteristics, influenced by variations in the geometric structure of the NF. The pronounced deflection of the NF, especially with depth, significantly accelerates earthquake nucleation and leads to the shift of the nucleation location to the NF.

    Conclusion

    This study address as the challenge of high degrees of freedom in finite element models when balancing static rock pressure (pre-stress) and gravitational effects, thereby improving the accuracy of nucleation simulation. Furthermore, our physics-based simulation successfully reproduces the coseismic slip pattern derived from kinematic finite fault inversion. This study provides a robust explanation for why large strike-slip earthquakes can nucleate on splay faults.

     

  • loading
  • [1]
    KOSTROV B V, DAS S. Principles of earthquake source mechanics[M]. Cambridge: Cambridge University Press, 1988.
    [2]
    AKI K, RICHARDS P G. Quantitative seismology[M]. W. H: Univ Science Books, 2002.
    [3]
    ANDREWS D J. Rupture velocity of plane strain shear cracks[J]. Journal of Geophysical Research, 1976, 81(32): 5679-5687. doi: 10.1029/JB081i032p05679
    [4]
    MADARIAGA R. Dynamics of an expanding circular fault[J]. Bulletin of the Seismological Society of America, 1976, 66(3): 639-666. doi: 10.1785/BSSA0660030639
    [5]
    DAY S M. Three-dimensional finite difference simulation of fault dynamics: Rectangular faults with fixed rupture velocity[J]. Bulletin of the Seismological Society of America, 1982, 72(3): 705-727.
    [6]
    DAY S M. Three-dimensional simulation of spontaneous rupture: The effect of nonuniform prestress[J]. Bulletin of the Seismological Society of America, 1982, 72(6A): 1881-1902. doi: 10.1785/BSSA07206A1881
    [7]
    OLSEN K B, MADARIAGA R, ARCHULETA R J. Three-dimensional dynamic simulation of the 1992 landers earthquake[J]. Science, 1997, 278: 834-838. doi: 10.1126/science.278.5339.834
    [8]
    MADARIAGA R, OLSEN K, ARCHULETA R. Modeling dynamic rupture in a 3D earthquake fault model[J]. Bulletin of the Seismological Society of America, 1998, 88(5): 1182-1197. doi: 10.1785/BSSA0880051182
    [9]
    DAY S M, DALGUER L A, LAPUSTA N, et al. Comparison of finite difference and boundary integral solutions to three-dimensional spontaneous rupture[J]. Journal of Geophysical Research (Solid Earth), 2005, 110(B12): 2005JB003813. doi: 10.1029/2005JB003813
    [10]
    ZHANG H M, CHEN X F. Dynamic rupture on a planar fault in three-dimensional half space: I. Theory[J]. Geophysical Journal International, 2006, 164(3): 633-652. doi: 10.1111/j.1365-246X.2006.02887.x
    [11]
    AOCHI H, FUKUYAMA E, MATSU'URA M. Spontaneous rupture propagation on a non-planar fault in 3-D elastic medium[M]//Anon. Microscopic and macroscopic simulation: Towards predictive modelling of the earthquake process. Basel: Birkhäuser Basel, 2001: 2003-2027.
    [12]
    CHEN X F, ZHANG H M. Modelling rupture dynamics of a planar fault in 3-D half space by boundary integral equation method: An overview[J]. Pure and Applied Geophysics, 2006, 163(2): 267-299.
    [13]
    ZHANG H M, CHEN X F. Dynamic rupture on a planar fault in three-dimensional half-space: II. Validations and numerical experiments[J]. Geophysical Journal International, 2006, 167(2): 917-932. doi: 10.1111/j.1365-246X.2006.03102.x
    [14]
    AAGAARD B T, HALL J F, HEATON T H. Characterization of near-source ground motions with earthquake simulations[J]. Earthquake Spectra, 2001, 17(2): 177-207. doi: 10.1193/1.1586171
    [15]
    OGLESBY D D, DAY S M, O'CONNELL D R H. Dynamic and static interaction of two thrust faults: A case study with general implications[J]. Journal of Geophysical Research (Solid Earth), 2003, 108(B10): 2002JB002228. doi: 10.1029/2002JB002228
    [16]
    BARALL M. A grid-doubling finite-element technique for calculating dynamic three-dimensional spontaneous rupture on an earthquake fault[J]. Geophysical Journal International, 2009, 178(2): 845-859. doi: 10.1111/j.1365-246X.2009.04190.x
    [17]
    BENJEMAA M, GLINSKY-OLIVIER N, CRUZ-ATIENZA V M, et al. Dynamic non-planar crack rupture by a finite volume method[J]. Geophysical Journal International, 2007, 171(1): 271-285. doi: 10.1111/j.1365-246X.2006.03500.x
    [18]
    BENJEMAA M, GLINSKY-OLIVIER N, CRUZ-ATIENZA V M, et al. 3-D dynamic rupture simulations by a finite volume method[J]. Geophysical Journal International, 2009, 178(1): 541-560. doi: 10.1111/j.1365-246X.2009.04088.x
    [19]
    KLINGER Y. High-resolution satellite imagery mapping of the surface rupture and slip distribution of the MW 7.8, 14 November 2001 Kokoxili earthquake, Kunlun fault, northern Tibet, China[J]. Bulletin of the Seismological Society of America, 2005, 95(5): 1970-1987. doi: 10.1785/0120040233
    [20]
    SHELLY D R. A high-resolution seismic catalog for the initial 2019 Ridgecrest earthquake sequence: Foreshocks, aftershocks, and faulting complexity[J]. Seismological Research Letters, 2020, 91(4): 1971-1978. doi: 10.1785/0220190309
    [21]
    LIU C L, LAY T, WANG R J, et al. Complex multi-fault rupture and triggering during the 2023 earthquake doublet in southeastern Türkiye[J]. Nature Communications, 2023, 14: 5564. doi: 10.1038/s41467-023-41404-5
    [22]
    DIETERICH J. A constitutive law for rate of earthquake production and its application to earthquake clustering[J]. Journal of Geophysical Research (Solid Earth), 1994, 99(B2): 2601-2618. doi: 10.1029/93JB02581
    [23]
    SCHOLZ C H. The mechanics of earthquakes and faulting[M]. 3rd ed. Cambridge: Cambridge University Press, 2019.
    [24]
    PARSONS T. A hypothesis for delayed dynamic earthquake triggering[J]. Geophysical Research Letters, 2005, 32(4): 2004GL021811. doi: 10.1029/2004GL021811
    [25]
    LAPUSTA N. The roller coaster of fault friction[J]. Nature Geoscience, 2009, 2(10): 676-677. doi: 10.1038/ngeo645
    [26]
    SONE H, SHIMAMOTO T. Frictional resistance of faults during accelerating and decelerating earthquake slip[J]. Nature Geoscience, 2009, 2(10): 705-708. doi: 10.1038/ngeo637
    [27]
    BIZZARRI A. On the deterministic description of earthquakes[J]. Reviews of Geophysics, 2011, 49(3): 2011RG000356. doi: 10.1029/2011RG000356
    [28]
    ZHU S B. Why did the most severe seismic hazard occur in the Beichuan area in the 2008 Wenchuan earthquake, China? Insight from finite element modelling[J]. Physics of the Earth and Planetary Interiors, 2018, 281: 79-91. doi: 10.1016/j.pepi.2018.05.005
    [29]
    GOMBERG J, REASENBERG P, COCCO M, et al. A frictional population model of seismicity rate change[J]. Journal of Geophysical Research (Solid Earth), 2005, 110(B5): 2004JB003404. doi: 10.1029/2004JB003404
    [30]
    HELMSTETTER A, SHAW B E. Afterslip and aftershocks in the rate-and-state friction law[J]. Journal of Geophysical Research (Solid Earth), 2009, 114(B1): 2007JB005077. doi: 10.1029/2007JB005077
    [31]
    KAME N, FUJITA S, NAKATANI M, et al. Effects of a revised rate- and state-dependent friction law on aftershock triggering model[J]. Tectonophysics, 2013, 600: 187-195. doi: 10.1016/j.tecto.2012.11.028
    [32]
    WALTERS R J, GREGORY L C, WEDMORE L N J, et al. Dual control of fault intersections on stop-start rupture in the 2016 Central Italy seismic sequence[J]. Earth and Planetary Science Letters, 2018, 500: 1-14. doi: 10.1016/j.jpgl.2018.07.043
    [33]
    TAYMAZ T, GANAS A, YOLSAL-ÇEVIKBILEN S, et al. Source mechanism and rupture process of the 24 January 2020 MW 6.7 Doğanyol-Sivrice earthquake obtained from seismological waveform analysis and space geodetic observations on the East Anatolian fault zone (Turkey)[J]. Tectonophysics, 2021, 804: 228745. doi: 10.1016/j.tecto.2021.228745
    [34]
    İNCEÖZ M, BAYKARA O, AKSOY E, et al. Measurements of soil gas radon in active fault systems: A case study along the North and East Anatolian fault systems in Turkey[J]. Radiation Measurements, 2006, 41(3): 349-353. doi: 10.1016/j.radmeas.2005.07.024
    [35]
    AKSOY E, İNCEÖZ M, KOÇYIĞIT A. Lake Hazar Basin: A negative flower structure on the East Anatolian fault system (EAFS), SE Turkey[J]. Turkish Journal of Earth Sciences, 2007, 16(3): 319-338.
    [36]
    ÇOLAK S, AKSOY E, KOÇYİĞİT A, et al. The palu-uluova strike-slip basin in the East Anatolian fault system, Turkey: Its transition from the Palaeotectonic to Neotectonic stage[J]. Turkish Journal of Earth Sciences, 2012, 21(4).
    [37]
    GÜVERCIN S E, KARABULUT H, KONCA A Ö, et al. Active seismotectonics of the East Anatolian fault[J]. Geophysical Journal International, 2022, 230(1): 50-69. doi: 10.1093/gji/ggac045
    [38]
    PROVOST F, KARABACAK V, MALET J P, et al. High-resolution co-seismic fault offsets of the 2023 Türkiye earthquake ruptures using satellite imagery[J]. Scientific Reports, 2024, 14: 6834. doi: 10.1038/s41598-024-55009-5
    [39]
    CARMICHAEL R S. Practical handbook of physical properties of rocks and minerals[M]. Boca Raton: CRC Press, 1989.
    [40]
    DRUCKER D C, PRAGER W, GREENBERG H J. Extended limit design theorems for continuous media[J]. Quarterly of Applied Mathematics, 1952, 9(4): 381-389. doi: 10.1090/qam/45573
    [41]
    LIOTTA D, RANALLI G. Correlation between seismic reflectivity and rheology in extended lithosphere, southern Tuscany, inner Northern Apennines, Italy[J]. Tectonophysics, 1999, 315(1/2/3/4): 109-122.
    [42]
    WANG K, XIONG X, ZHOU Y M, et al. Three-dimensional thermo-rheological structure of the lithosphere in the North China Craton determined by integrating multiple observations: Implications for the formation of rifts[J]. Science China (Earth Sciences), 2020, 63(7): 969-984. doi: 10.1007/s11430-019-9566-1
    [43]
    REILINGER R, MCCLUSKY S, VERNANT P, et al. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions[J]. Journal of Geophysical Research (Solid Earth), 2006, 111(B5): 2005JB004051. doi: 10.1029/2005JB004051
    [44]
    MCGARR A. On the state of lithospheric stress in the absence of applied tectonic forces[J]. Journal of Geophysical Research (Solid Earth), 1988, 93(B11): 13609-13617. doi: 10.1029/JB093iB11p13609
    [45]
    LI Z, WANG K, XIONG X, et al. Convex-up style of deformation within grabens in regions of incomplete crossing conjugate normal faults: A numerical simulation investigation and case study[J]. Journal of Earth Science, 2024, 35(3): 839-849. doi: 10.1007/s12583-022-1709-y
    [46]
    FUKUYAMA E, OLSEN K B. A condition for super-shear rupture propagation in a heterogeneous stress field[J]. Pure and Applied Geophysics, 2002, 159(9): 2047-2056. doi: 10.1007/s00024-002-8722-y
    [47]
    KAMMER D S, SVETLIZKY I, COHEN G, et al. The equation of motion for supershear frictional rupture fronts[J]. Science Advances, 2018, 4(7): eaat5622. doi: 10.1126/sciadv.aat5622
    [48]
    HARRIS R A, DAY S M. Dynamics of fault interaction: Parallel strike-slip faults[J]. Journal of Geophysical Research (Solid Earth), 1993, 98(B3): 4461-4472. doi: 10.1029/92JB02272
    [49]
    DUAN B C, OGLESBY D D. Multicycle dynamics of nonplanar strike-slip faults[J]. Journal of Geophysical Research (Solid Earth), 2005, 110(B3): 2004JB003298. doi: 10.1029/2004JB003298
    [50]
    KASE Y, DAY S M. Spontaneous rupture processes on a bending fault[J]. Geophysical Research Letters, 2006, 33(10): 2006GL025870. doi: 10.1029/2006GL025870
    [51]
    BRUHAT L, FANG Z J, DUNHAM E M. Rupture complexity and the supershear transition on rough faults[J]. Journal of Geophysical Research (Solid Earth), 2016, 121(1): 210-224. doi: 10.1002/2015JB012512
    [52]
    JIA Z, JIN Z Y, MARCHANDON M, et al. The complex dynamics of the 2023 Kahramanmaraş, Turkey, MW 7.8-7.7 earthquake doublet[J]. Science, 2023, 381: 985-990. doi: 10.1126/science.adi0685
    [53]
    BULUT F, et al. Geothermal reservoir engineering of the East Anatolian fault system[C]//Anon. Proceedings of 43rd Workshop on Geothermal Reservoir Engineering Stanford University. [S. 1.]: [s. n.], 2018.
    [54]
    SHELTON J W. Listric normal faults: An illustrated summary[J]. AAPG Bulletin, 1984, 68: AD461426-16F7-11D7-8645000102C1865D.
    [55]
    YUAN X P, LEROY Y M, MAILLOT B. Control of fluid pressures on the formation of listric normal faults[J]. Earth and Planetary Science Letters, 2020, 529: 115849. doi: 10.1016/j.jpgl.2019.115849
    [56]
    FOUNDATION T E, ERDIK M, TÜMSA M B D, et al. A preliminary report on the February 6, 2023 earthquakes in Türkiye[J]. Temblor, 2023.
    [57]
    ZHANG Y J, TANG X W, LIU D C, et al. Geometric controls on cascading rupture of the 2023 Kahramanmaraş earthquake doublet[J]. Nature Geoscience, 2023, 16(11): 1054-1060. doi: 10.1038/s41561-023-01283-3
    [58]
    PETERSEN G M, BÜYÜKAKPINAR P, VERA SANHUEZA F O, et al. The 2023 Southeast Türkiye seismic sequence: Rupture of a complex fault network[J]. The Seismic Record, 2023, 3(2): 134-143. doi: 10.1785/0320230008
    [59]
    MA Z F, LI C L, JIANG Y, et al. Space geodetic insights to the dramatic stress rotation induced by the February 2023 Turkey-Syria earthquake doublet[J]. Geophysical Research Letters, 2024, 51(6): e2023GL107788. doi: 10.1029/2023GL107788
    [60]
    许冲, 高明星, 薛智文, 等. 专栏评论: 高新技术赋能地震与地质灾害防治研究进展[J]. 地质科技通报, 2025, 44(4): 16-22.

    XU C, GAO M X, XUE Z W, et al. Column review: Advancements in earthquake and geological disaster mitigation empowered by advanced technologies[J]. Bulletin of Geological Science and Technology, 2025, 44(4): 16-22.(in Chinese with English abstract
    [61]
    吴麒瑞, 田苗, 谢忠, 等. 融合多模态数据的地震灾害知识图谱构建及应用[J]. 地质科技通报, 2025, 44(4): 90-106.

    WU Q R, TIAN M, XIE Z, et al. Construction and application of earthquake disaster knowledge graph fusing with multimodal data[J]. Bulletin of Geological Science and Technology, 2025, 44(4): 90-106.(in Chinese with English abstract
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(54) PDF Downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return