Turn off MathJax
Article Contents
LI Changhai,DONG Xiaowei,SHI Qianru,et al. Source area and sedimentary model of the sandstone in the Third Member of Dongying Formation in main concave, Qikou Sag, Huanghua Depression: Constraints from detrital zircons U-Pb dating[J]. Bulletin of Geological Science and Technology,2025,44(5):1-17 doi: 10.19509/j.cnki.dzkq.tb20240696
Citation: LI Changhai,DONG Xiaowei,SHI Qianru,et al. Source area and sedimentary model of the sandstone in the Third Member of Dongying Formation in main concave, Qikou Sag, Huanghua Depression: Constraints from detrital zircons U-Pb dating[J]. Bulletin of Geological Science and Technology,2025,44(5):1-17 doi: 10.19509/j.cnki.dzkq.tb20240696

Source area and sedimentary model of the sandstone in the Third Member of Dongying Formation in main concave, Qikou Sag, Huanghua Depression: Constraints from detrital zircons U-Pb dating

doi: 10.19509/j.cnki.dzkq.tb20240696
More Information
  • Corresponding author: E-mail:changhai0912@163.com
  • Received Date: 18 Nov 2024
  • Accepted Date: 24 Jun 2025
  • Rev Recd Date: 04 Jun 2025
  • Available Online: 24 Jun 2025
  • Objective

    The Qikou Sag, a significant hydrocarbon-bearing sub-basin within the Bohai Bay Basin of eastern China, has recently witnessed a critical exploration breakthrough. Well HT1, drilled in the main trough, encountered a sandstone reservoir within the Third Member of the Dongying Formation (Ed3) and achieved commercial oil flow. However, the precise provenance and spatial distribution of this Ed3 sandstone remain enigmatic. Identifying the sediment source is fundamental to constructing a reliable "source-to-sink" system, which is crucial for predicting the distribution of high-quality reservoirs. This study aims to definitively determine the provenance of the Ed3 sandstone through detrital zircon U-Pb geochronology and establish a robust sedimentary model to guide exploration.

    Methods

    To address the provenance question, this study employed laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb dating on detrital zircons extracted from the Ed3 sandstone. Zircon is an ideal mineral for provenance analysis due to its high physical and chemical stability, allowing it to survive multiple cycles of erosion and transport while preserving its primary crystallization age. Thus, the age spectrum of detrital zircons in a sedimentary rock serves as a unique fingerprint that can be compared to the age signatures of potential source areas, enabling a direct link between the sediment and its origin.

    Results

    The U-Pb dating results from the Ed3 sandstone revealed a characteristic age distribution pattern. The detrital zircon ages cluster into four primary intervals: 26002300 Ma (Neoarchean to Paleoproterozoic), 16802000 Ma (Paleoproterozoic), 300−240 Ma (Permian), and a remarkably dominant peak between 160−100 Ma (Jurassic to Cretaceous). The overwhelming abundance of zircons in the 160−100 Ma range immediately pointed towards a significant contribution from a source region with intense Mesozoic magmatic activity. The zircon age signature of the Cangxian uplift was examined. Its age spectrum is characterized by a strong peak at 300−240 Ma and a relative lack of Mesozoic zircons, presenting a clear mismatch with the Ed3 sandstone signature and effectively ruling it out as the primary source. In contrast, the Yanshan orogenic belt to the north is a complex tectonic zone with a prolonged magmatic history spanning from the Archean to the Mesozoic. Critically, it is renowned for widespread Jurassic-Cretaceous (Yanshanian) magmatism, with a pronounced age peak precisely between 160 and 100 Ma. The striking similarity between the Ed3 zircon age pattern and the magmatic record of the Yanshan belt provides compelling evidence that the latter served as the principal provenance for the sandstone. Previous studies indicate that the Yanshan orogenic belt experienced significant Cenozoic uplift, coeval with the deposition of the Ed3, creating a well-defined mountain-basin system. Several major paleo-rivers, such as the Paleo-Yongding River, Paleo-Chaobai River, and Paleo-Luan River, are interpreted to have acted as efficient sediment conduits. These rivers eroded the Mesozoic granitic rocks of the Yanshan belt and transported the detritus southward over long distances into the Qikou Sag.

    Conclusions

    This study successfully resolves the provenance of the Ed3 sandstone in the main trough of the Qikou Sag. Detrital zircon U-Pb geochronology unequivocally identifies the northern Yanshan orogenic belt as the primary source, excluding the nearby Cangxian uplift. The construction of the "remote source, channelized transport, deep-trough deposition" model has profound implications for exploration. It validates the existence of high-quality sandstone reservoirs in the deep troughs formed by long-distance transport systems. Consequently, future exploration efforts should prioritize mapping the paleo-drainage pathways that funneled sediments from the Yanshan belt into the main trough of the Qikou Sag. This model significantly reduces exploration risk in the deep plays of the depression and provides a valuable analog for searching for similar subtle reservoirs in other continental rift basins worldwide.

     

  • loading
  • [1]
    马收先, 孟庆任, 曲永强. 轻矿物物源分析研究进展[J]. 岩石学报, 2014, 30(2): 597-608.

    MA S X, MENG Q R, QU Y Q. Development on provenance analysis of light minerals[J]. Acta Petrologica Sinica, 2014, 30(2): 597-608. (in Chinese with English abstract
    [2]
    陈星渝, 张志杰, 万力, 等. 深时源-汇系统要素的常用定量分析方法[J]. 地质科技通报, 2024, 43(1): 89-107.

    CHEN X Y, ZHANG Z J, WAN L, et al. Quantitative analysis methods of source-to-sink systems in deep-time and their progress[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 89-107. (in Chinese with English abstract
    [3]
    张凌, 王平, 陈玺赟, 等. 碎屑锆石U-Pb年代学数据获取、分析与比较[J]. 地球科学进展, 2020, 35(4): 414-430. doi: 10.11867/j.issn.1001-8166.2020.030

    ZHANG L, WANG P, CHEN X Y, et al. Review in detrital zircon U-Pb geochronology: Data acquisition, analysis and comparison[J]. Advances in Earth Science, 2020, 35(4): 414-430. (in Chinese with English abstract doi: 10.11867/j.issn.1001-8166.2020.030
    [4]
    潘双苹, 胡光明, 李积永, 等. 柴达木盆地扎哈泉地区新近纪物源分析[J]. 地质科技通报, 2023, 42(3): 201-209.

    PAN S P, HU G M, LI J Y, et al. Analysis of Neogene provenance in Zhahaquan area, Qaidam Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 201-209. (in Chinese with English abstract
    [5]
    龚胜利, 闫琢玉, 李百强, 等. 琼东南盆地中中新统海底扇碎屑岩锆石U-Pb年龄特征及物源分析[J]. 地质科技通报, 2024, 43(5): 45-54.

    GONG S L, YAN Z Y, LI B Q, et al. U-Pb age characteristics of detrital zircon and provenance analysis of a Middle Miocene submarine fan in the Qiongdongnan Basin[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 45-54. (in Chinese with English abstract
    [6]
    周立宏, 何海清, 陈长伟, 等. 歧口凹陷滨海斜坡深凹区海探1井东营组勘探突破与启示[J]. 中国石油勘探, 2023, 28(6): 78-89. doi: 10.3969/j.issn.1672-7703.2023.06.010

    ZHOU L H, HE H Q, CHEN C W, et al. Exploration breakthrough and enlightenment of Dongying Formation in Well Haitan 1 in the deep subsag area in Binhai slope, Qikou Sag[J]. China Petroleum Exploration, 2023, 28(6): 78-89. (in Chinese with English abstract doi: 10.3969/j.issn.1672-7703.2023.06.010
    [7]
    李三忠, 索艳慧, 周立宏, 等. 华北克拉通内部的拉分盆地: 渤海湾盆地黄骅坳陷结构构造与演化[J]. 吉林大学学报(地球科学版), 2011, 41(5): 1362-1379.

    LI S Z, SUO Y H, ZHOU L H, et al. Pull-apart basins within the North China Craton: Structural pattern and evolution of Huanghua Depression in Bohai Bay Basin[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(5): 1362-1379. (in Chinese with English abstract
    [8]
    任建业, 廖前进, 卢刚臣, 等. 黄骅坳陷构造变形格局与演化过程分析[J]. 大地构造与成矿学, 2010, 34(4): 461-472. doi: 10.3969/j.issn.1001-1552.2010.04.002

    REN J Y, LIAO Q J, LU G C, et al. Deformation framework and evolution of the Huanghua Depression, Bohai Gulf[J]. Geotectonica et Metallogenia, 2010, 34(4): 461-472. (in Chinese with English abstract doi: 10.3969/j.issn.1001-1552.2010.04.002
    [9]
    周琦杰, 刘永江, 王德英, 等. 渤海湾中部中、新生代构造演化与潜山的形成[J]. 地学前缘, 2022, 29(5): 147-160.

    ZHOU Q J, LIU Y J, WANG D Y, et al. Mesozoic-Cenozoic tectonic evolution and buried hill formation in central Bohai Bay[J]. Earth Science Frontiers, 2022, 29(5): 147-160. (in Chinese with English abstract
    [10]
    刘海涛, 于海涛, 孙雨, 等. 断陷盆地多类型斜坡形成与油气差异富集规律: 以渤海湾盆地为例[J]. 岩石学报, 2022, 38(9): 2697-2708. doi: 10.18654/1000.0569/2022.09.11

    LIU H T, YU H T, SUN Y, et al. Formation and differential enrichment of oil and gas on multiple types of slopes in rifted basins: Taking the Bohai Bay Basin as an example, China[J]. Acta Petrologica Sinica, 2022, 38(9): 2697-2708. (in Chinese with English abstract doi: 10.18654/1000.0569/2022.09.11
    [11]
    吕琳, 焦养泉, 吴立群, 等. 渤海湾盆地歧口凹陷古近系沙一段物源−沉积体系重建[J]. 沉积学报, 2012, 30(4): 629-638.

    LÜ L, JIAO Y Q, WU L Q, et al. Reconstruction of provenance-sedimentary system of the First Member of the Paleogene Shahejie Formation in the Qikou Sag, Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2012, 30(4): 629-638. (in Chinese with English abstract
    [12]
    周素彦, 马建英, 周可佳, 等. 歧口地区港西凸起周缘沙二段沉积体系特征[J]. 东北石油大学学报, 2019, 43(4): 88-98. doi: 10.3969/j.issn.2095-4107.2019.04.009

    ZHOU S Y, MA J Y, ZHOU K J, et al. Sedimentary features of the Second Member of Shahejie Formation in the Gangxi uplift of Qikou area[J]. Journal of Northeast Petroleum University, 2019, 43(4): 88-98. (in Chinese with English abstract doi: 10.3969/j.issn.2095-4107.2019.04.009
    [13]
    郑斯赫, 韩国猛, 汪晓敏, 等. 歧口凹陷板桥−滨海地区沙二段沉积体系展布特征及成藏效应[J]. 东北石油大学学报, 2021, 45(1): 11-19. doi: 10.3969/j.issn.2095-4107.2021.01.002

    ZHENG S H, HAN G M, WANG X M, et al. Sedimentary depositional system and hydrocarbon accumulation effect in the 2nd Member of the Shahejie Formation of Banqiao-Binhai area, Qikou Sag[J]. Journal of Northeast Petroleum University, 2021, 45(1): 11-19. (in Chinese with English abstract doi: 10.3969/j.issn.2095-4107.2021.01.002
    [14]
    于海涛. 歧口凹陷中南部沙河街组源−汇体系特征及控砂机制[D]. 黑龙江大庆: 东北石油大学, 2020.

    YU H T. Characteristics of source-to-sink system and sand control mechanism of Shahejie Formation in central and southern Qikou Depression[D]. Daqing Heilongjiang: Northeast Petroleum University, 2020. (in Chinese with English abstract
    [15]
    LIU Y S, HU Z C, ZONG K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4
    [16]
    ANDERSEN T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79.
    [17]
    KIRKLAND C L, SMITHIES R H, TAYLOR R J M, et al. Zircon Th/U ratios in magmatic environs[J]. Lithos, 2015, 212: 397-414.
    [18]
    张拴宏, 赵越, 宋彪, 等. 冀北隆化早前寒武纪高级变质区内的晚古生代片麻状花岗闪长岩: 锆石SHRIMP U-Pb年龄及其构造意义[J]. 岩石学报, 2004, 20(3): 621-626.

    ZHANG S H, ZHAO Y, SONG B, et al. The Late Paleozoic gneissic granodiorite pluton in early Pre-Cambrian high-grade metamorphic terrains near Longhua County in northern Hebei Province, North China: Result from zircon SHRIMP U-Pb dating and its tectonic implications[J]. Acta Petrologica Sinica, 2004, 20(3): 621-626. (in Chinese with English abstract
    [19]
    万渝生, 董春艳, 颉颃强, 等. 华北克拉通新太古代早期−中太古代晚期(3.0~2.6 Ga)巨量陆壳增生: 综述[J]. 地质力学学报, 2022, 28(5): 866-906. doi: 10.12090/j.issn.1006-6616.20222817

    WAN Y S, DONG C Y, XIE H Q, et al. Huge growth of the Late Mesoarchean-Early Neoarchean(3.0-2.6 Ga) continental crust in the North China Craton: A review[J]. Journal of Geomechanics, 2022, 28(5): 866-906. (in Chinese with English abstract doi: 10.12090/j.issn.1006-6616.20222817
    [20]
    TANG L, SANTOSH M. Neoarchean-Paleoproterozoic terrane assembly and Wilson cycle in the North China Craton: An overview from the central segment of the Trans-North China Orogen[J]. Earth-Science Reviews, 2018, 182: 1-27. doi: 10.1016/j.earscirev.2018.04.010
    [21]
    ZHANG H F, ZHAI M G, SANTOSH M, et al. Low-Al and high-Al trondhjemites in the Huai′an complex, North China Craton: Geochemistry, zircon U-Pb and Hf isotopes, and implications for Neoarchean crustal growth and remelting[J]. Journal of Asian Earth Sciences, 2012, 49: 203-213. doi: 10.1016/j.jseaes.2011.11.004
    [22]
    LIU F, GUO J H, PENG P, et al. Zircon U-Pb ages and geochemistry of the Huai′an TTG gneisses terrane: Petrogenesis and implications for ~2.5 Ga crustal growth in the North China Craton[J]. Precambrian Research, 2012, 212: 225-244.
    [23]
    ZHAO G, WILDE S A, SUN M, et al. SHRIMP U-Pb zircon geochronology of the Huai′an Complex: Constraints on Late Archean to Paleoproterozoic magmatic and metamorphic events in the Trans-North China Orogen[J]. American Journal of Science, 2008, 308(3): 270-303. doi: 10.2475/03.2008.04
    [24]
    SU Y P, ZHENG J P, GRIFFIN W L, et al. Zircon U-Pb ages and Hf isotope of gneissic rocks from the Huai′an Complex: Implications for crustal accretion and tectonic evolution in the northern margin of the North China Craton[J]. Precambrian Research, 2014, 255: 335-354. doi: 10.1016/j.precamres.2014.10.007
    [25]
    赵太平, 陈福坤, 翟明国, 等. 河北大庙斜长岩杂岩体锆石U-Pb年龄及其地质意义[J]. 岩石学报, 2004, 20(3): 685-690. doi: 10.3321/j.issn:1000-0569.2004.03.032

    ZHAO T P, CHEN F K, ZHAI M G, et al. Single zircon U-Pb ages and their geological significance of the Damiao anorthosite complex, Hebei Province, China[J]. Acta Petrologica Sinica, 2004, 20(3): 685-690. (in Chinese with English abstract doi: 10.3321/j.issn:1000-0569.2004.03.032
    [26]
    杨进辉, 吴福元, 柳小明, 等. 北京密云环斑花岗岩锆石U-Pb年龄和Hf同位素及其地质意义[J]. 岩石学报, 2005, 21(6): 1633-1644. doi: 10.3321/j.issn:1000-0569.2005.06.011

    YANG J H, WU F Y, LIU X M, et al. Zircon U-Pb ages and Hf isotopes and their geological significance of the Miyun rapakivi granites from Beijing, China[J]. Acta Petrologica Sinica, 2005, 21(6): 1633-1644. (in Chinese with English abstract doi: 10.3321/j.issn:1000-0569.2005.06.011
    [27]
    高维, 张传恒, 高林志, 等. 北京密云环斑花岗岩的锆石SHRIMP U-Pb年龄及其构造意义[J]. 地质通报, 2008, 27(6): 793-798. doi: 10.3969/j.issn.1671-2552.2008.06.007

    GAO W, ZHANG C H, GAO L Z, et al. Zircon SHRIMP U-Pb age of rapakivi granite in Miyun, Beijing, China, and its tectono-stratigraphic implications[J]. Geological Bulletin of China, 2008, 27(6): 793-798. (in Chinese with English abstract doi: 10.3969/j.issn.1671-2552.2008.06.007
    [28]
    ZHANG S H, LIU S W, ZHAO Y, et al. The 1.75-1.68 Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton: Magmatism related to a Paleoproterozoic Orogen[J]. Precambrian Research, 2007, 155(3/4): 287-312.
    [29]
    张拴宏, 赵越, 刘建民, 等. 华北地块北缘晚古生代−早中生代岩浆活动期次、特征及构造背景[J]. 岩石矿物学杂志, 2010, 29(6): 824-842. doi: 10.3969/j.issn.1000-6524.2010.06.017

    ZHANG S H, ZHAO Y, LIU J M, et al. Geochronology, geochemistry and tectonic setting of the Late Paleozoic-Early Mesozoic magmatism in the northern margin of the North China Block: A preliminary review[J]. Acta Petrologica et Mineralogica, 2010, 29(6): 824-842. (in Chinese with English abstract doi: 10.3969/j.issn.1000-6524.2010.06.017
    [30]
    韩宝福, 加加美宽雄, 李惠民. 河北平泉光头山碱性花岗岩的时代、Nd-Sr同位素特征及其对华北早中生代壳幔相互作用的意义[J]. 岩石学报, 2004, 20(6): 74-87.

    HAN B F, JIA J M K X, LI H M. Age and Nd-Sr isotopic geochemistry of the Guangtoushan alkaline granite, Hebei Province, China: Implications for Early Mesozoic crust-mantle interaction in North China Block[J]. Acta Petrologica Sinica, 2004, 20(6): 74-87. (in Chinese with English abstract
    [31]
    王惠初, 赵凤清, 李惠民, 等. 冀北闪长质岩石的锆石SHRIMP U-Pb年龄: 晚古生代岩浆弧的地质记录[J]. 岩石学报, 2007, 23(3): 597-604. doi: 10.3321/j.issn:1000-0569.2007.03.007

    WANG H C, ZHAO F Q, LI H M, et al. Zircon SHRIMP U-Pb age of the dioritic rocks from northern Hebei: The geological records of Late Paleozoic magmatic arc[J]. Acta Petrologica Sinica, 2007, 23(3): 597-604. (in Chinese with English abstract doi: 10.3321/j.issn:1000-0569.2007.03.007
    [32]
    马寅生, 曾庆利, 宋彪, 等. 燕山中段盘山花岗岩体锆石SHRIMP U-Pb年龄测定及其构造意义[J]. 岩石学报, 2007, 23(3): 547-556. doi: 10.3321/j.issn:1000-0569.2007.03.002

    MA Y S, ZENG Q L, SONG B, et al. SHRIMP U-Pb dating of zircon from Panshan granitoid pluton in Yanshan Orogenic Belt and its tectonic implications[J]. Acta Petrologica Sinica, 2007, 23(3): 547-556. (in Chinese with English abstract doi: 10.3321/j.issn:1000-0569.2007.03.002
    [33]
    罗镇宽, 苗来成, 关康, 等. 冀东都山花岗岩基及相关花岗斑岩脉SHRIMP锆石U-Pb法定年及其意义[J]. 地球化学, 2003, 32(2): 173-180. doi: 10.3321/j.issn:0379-1726.2003.02.011

    LUO Z K, MIAO L C, GUAN K, et al. SHRIMP U-Pb zircon dating of the Dushan granitic batholith and related granite-porphyry dyke, eastern Hebei Province, [J]. Geochimica, 2003, 32(2): 173-180. (in Chinese with English abstract doi: 10.3321/j.issn:0379-1726.2003.02.011
    [34]
    ZHANG S H, ZHAO Y, DAVIS G A, et al. Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton: Implications for lithospheric thinning and decratonization[J]. Earth-Science Reviews, 2014, 131: 49-87. doi: 10.1016/j.earscirev.2013.12.004
    [35]
    李三忠, 索艳慧, 李玺瑶, 等. 西太平洋中生代板块俯冲过程与东亚洋陆过渡带构造−岩浆响应[J]. 科学通报, 2018, 63(16): 1550-1593. doi: 10.1360/N972017-01113

    LI S Z, SUO Y H, LI X Y, et al. Mesozoic plate subduction in West Pacific and tectono-magmatic response in the East Asian ocean-continent connection zone[J]. Chinese Science Bulletin, 2018, 63(16): 1550-1593. (in Chinese with English abstract doi: 10.1360/N972017-01113
    [36]
    白云风, 王振升, 韦阿娟, 等. 黄骅坳陷东营组重矿物时空展布特征及物源体系分析[J]. 大庆石油地质与开发, 2008, 27(2): 39-42.

    BAI Y F, WANG Z S, WEI A J, et al. Time and space distribution characteristics and material resource system of heavy minerals in Dongying Formation of Huanghua Depression[J]. Petroleum Geology & Oilfield Development in Daqing, 2008, 27(2): 39-42. (in Chinese with English abstract
    [37]
    王华, 白云风, 黄传炎, 等. 歧口凹陷古近纪东营期古物源体系重建与应用[J]. 地球科学, 2009, 34(3): 448-456. doi: 10.3321/j.issn:1000-2383.2009.03.009

    WANG H, BAI Y F, HUANG C Y, et al. Reconstruction and application of the Paleogene provenance system of the Dongying Formation in Qikou Depression[J]. Earth Science, 2009, 34(3): 448-456. (in Chinese with English abstract doi: 10.3321/j.issn:1000-2383.2009.03.009
    [38]
    孙熙邦. 歧口凹陷滨海断鼻东三段沉积微相与砂体展布规律研究[D]. 北京: 中国石油大学(北京), 2023.

    SUN X B. Study on sedimentary microfacies and sand body distribution of Ed3 of Binhai fault nose in Qikou Sag[D]. Beijing: China University of Petroleum (Beijing), 2023. (in Chinese with English abstract
    [39]
    张拴宏, 赵越, 刘健, 等. 华北地块北缘晚古生代−中生代花岗岩体侵位深度及其构造意义[J]. 岩石学报, 2007, 23(3): 625-638.

    ZHANG S H, ZHAO Y, LIU J, et al. Emplacement depths of the Late Paleozoic-Mesozoic granitoid intrusions from the northern North China Block and their tectonic implications[J]. Acta Petrologica Sinica, 2007, 23(3): 625-638. (in Chinese with English abstract
    [40]
    吴珍汉, 崔盛芹, 吴淦国, 等. 燕山山脉隆升过程的热年代学分析[J]. 地质论评, 2000, 46(1): 49-57. doi: 10.3321/j.issn:0371-5736.2000.01.007

    WU Z H, CUI S Q, WU G G, et al. Thermochronological analysis on the uplift process of the Yanshan mountains[J]. Geological Review, 2000, 46(1): 49-57. (in Chinese with English abstract doi: 10.3321/j.issn:0371-5736.2000.01.007
    [41]
    吴中海, 吴珍汉. 燕山及邻区晚白垩世以来山脉隆升历史的低温热年代学证据[J]. 地质学报, 2003, 77(3): 399-406.

    WU Z H, WU Z H. Low-temperature thermochronological analysis of the uplift history of the Yanshan Mountain and its neighboring area[J]. Acta Geologica Sinica, 2003, 77(3): 399-406. (in Chinese with English abstract
    [42]
    陈子健. 燕山西段延庆−丰宁地区白垩纪岩体剥露过程的低温热年代学研究[D]. 北京: 中国地质大学(北京), 2019.

    CHEN Z J. Low-temperature thermochronological study on the exhumation process of Cretaceous potos in Yanqing-Fengning area of the western Yanshan Belt[D]. Beijing: China University of Geosciences, 2019. (in Chinese with English abstract
    [43]
    吴忱, 马永红, 张秀清. 华北山地的古河道与古水系[J]. 地理研究, 1996, 15(3): 33-41.

    WU C, MA Y H, ZHANG X Q. Palaeochannel and palaeodrainage patterns in the North China mountains[J]. Geographical Research, 1996, 15(3): 33-41. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(32) PDF Downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return