Citation: | YANG Jiayu,LIU Tao,LU Chuqian,et al. A review of progress in ocean ecological observing system in China[J]. Bulletin of Geological Science and Technology,2025,44(5):259-273 doi: 10.19509/j.cnki.dzkq.tb20240516 |
Marine ecological observation has become one of the essential approaches to supporting ocean exploration, ecological protection and restoration, disaster prevention and reduction, and early warning of ecological hazards. With the intensification of human activities and the accelerating impacts of global climate change, typical marine ecosystems are increasingly facing severe degradation and fragility. These threats include frequent red tides, eutrophication, and biodiversity loss in coastal waters, all of which impose significant economic and ecological costs. Against this backdrop, there is an urgent demand to establish advanced real-time, automated, and intelligent ecological observing systems. Such systems are expected to capture dynamic variations of marine environmental parameters and provide a scientific basis for sustainable marine management and the construction of ecological civilization.
This paper provides an overview of international progress in marine ecological observation technologies, focusing on nearshore, deep-sea, and seafloor monitoring systems. Developed marine countries have built integrated observation networks composed of buoys, coastal stations, underwater platforms, and satellite remote sensing, which together achieve long-term, continuous, and real-time monitoring of multiple environmental and ecological parameters. Typical examples include the United States Integrated Ocean Observing System (IOOS), the Ocean Observatories Initiative (OOI), Canada's NEPTUNE seafloor network, and Europe's EMSO project. These networks have demonstrated the capability to monitor not only hydrological and meteorological variables but also ecological indicators critical for predicting and preventing ecological disasters. By comparison, China's ocean ecological observation systems started relatively late and have mainly relied on coastal eco-buoys since the reform and opening-up period. Although more than 100 buoy-based monitoring stations have been deployed across major coastal provinces, these systems are still limited in scope, parameter diversity, and integration capacity. Current observation remains dominated by localized, single-point monitoring, with insufficient network connectivity and poor spatial resolution. Moreover, the existing systems are constrained by limited endurance, high maintenance costs, and weak data-sharing mechanisms, making it difficult to fully meet the requirements of ecological disaster early warning and ecosystem protection in the new era.
To overcome these limitations, this paper proposes that China's ecological observation should shift from simple buoy-based approaches toward the construction of collaborative, stereoscopic observation networks. Such networks should integrate multiple platforms: Shore-based towers, eco-buoys, underwater cabled observatories, shipborne systems, unmanned aerial vehicles, and satellite remote sensing: Forming a comprehensive "shore-sea-air-space" observation framework. With enhanced accuracy, extended parameters, and improved spatial and temporal coverage, these networks would enable dynamic, multi-dimensional monitoring of marine ecological processes. The establishment of such integrated networks is expected to play a crucial role in early warning of ecological disasters such as harmful algal blooms, coral bleaching, and ecosystem degradation. Furthermore, the accumulation of long-term, continuous datasets will provide essential support for assessing ecosystem health, guiding ecological restoration projects, and improving the resilience of coastal socio-economic systems. On a broader scale, advancing China's marine ecological observation capacity will also contribute to international collaboration in global ocean observing, strengthen data-sharing, and enhance China's role in addressing global marine environmental challenges. In summary, the paper highlights both the progress and the limitations of China's current ecological observation efforts and argues for a transformation toward advanced, stereoscopic, and multi-platform ecological observing systems. This transition is vital for improving marine ecological protection, supporting disaster prevention and mitigation, and achieving the long-term goal of sustainable ocean development under ecological civilization.
[1] |
王初升, 唐森铭, 宋普庆. 我国赤潮灾害的经济损失评估[J]. 海洋环境科学, 2011, 30(3): 428-431. doi: 10.3969/j.issn.1007-6336.2011.03.027
WANG C S, TANG S M, SONG P Q. Assessment on economic losses caused by red tide disasters in China seas[J]. Marine Environmental Science, 2011, 30(3): 428-431. (in Chinese with English abstract doi: 10.3969/j.issn.1007-6336.2011.03.027
|
[2] |
中华人民共和国自然资源部. 2023年中国海洋生态预警监测公报[R]. 北京: 中华人民共和国自然资源部, 2024.
Ministry of Natural Resources of the People's Republic of China. Bulletin of China's marine ecological early warning and monitoring in 2023[R]. Beijing: Ministry of Natural Resources of the People's Republic of China, 2024. (in Chinese)
|
[3] |
苏纪兰, 唐启升. 我国海洋生态系统基础研究的发展: 国际趋势和国内需求[J]. 地球科学进展, 2005, 20(2): 139-143. doi: 10.3321/j.issn:1001-8166.2005.02.001
SU J L, TANG Q S. A new direction for China's research on marine ecosystems: International trend and national needs[J]. Advance in Earth Sciences, 2005, 20(2): 139-143. (in Chinese with English abstract doi: 10.3321/j.issn:1001-8166.2005.02.001
|
[4] |
李永祺, 唐学玺, 张鑫鑫, 等. 退化海洋生态系统修复相关概念与修复模式的探讨[J]. 中国海洋大学学报(自然科学版), 2024, 54(11): 1-9.
LI Y Q, TANG X X, ZHANG X X, et al. Discussion on related concepts and rehabilitation of degraded marine ecosystem[J]. Periodical of Ocean University of China, 2024, 54(11): 1-9. (in Chinese with English abstract
|
[5] |
BORJA A, ANDERSEN J H, ARVANITIDIS C D, et al. Past and future grand challenges in marine ecosystem ecology[J]. Frontiers in Marine Science, 2020, 7: 362. doi: 10.3389/fmars.2020.00362
|
[6] |
TANHUA T, MCCURDY A, FISCHER A, et al. What we have learned from the framework for ocean observing: Evolution of the global ocean observing system[J]. Frontiers in Marine Science, 2019, 6: 471. doi: 10.3389/fmars.2019.00471
|
[7] |
VUILLEMIN R, SANFILIPOO L, MOSCETTA P, et al. Continuous nutrient automated monitoring on the Mediterranean sea using in situ flow analyzer[C]//Anon. OCEAN 2009, MTS/IEEE Biloxi. Marine Technology for Our Future: Global and Local Challenges. [S. l. ]: [s. n. ], 2009: 1-8.
|
[8] |
JOHNSON K S, COLETTI L J, CHAVEZ F P. Diel nitrate cycles observed with in situ sensors predict monthly and annual new production[J]. Deep Sea Research Part I (Oceanographic Research Papers), 2006, 53(3): 561-573. doi: 10.1016/j.dsr.2005.12.004
|
[9] |
JOHNSON K S. Simultaneous measurements of nitrate, oxygen, and carbon dioxide on oceanographic moorings: Observing the Redfield ratio in real time[J]. Limnology and Oceanography, 2010, 55(2): 615-627. doi: 10.4319/lo.2010.55.2.0615
|
[10] |
SANDFORD R C, EXENBERGER A, WORSFOLD P J. Nitrogen cycling in natural waters using in situ, reagentless UV spectrophotometry with simultaneous determination of nitrate and nitrite[J]. Environmental Science & Technology, 2007, 41(24): 8420-8425.
|
[11] |
MOORE T S, MULLAUGH K M, HOLYOKE R R, et al. Marine chemical technology and sensors for marine waters: Potentials and limits[J]. Annual Review of Marine Science, 2009, 1: 91-115. doi: 10.1146/annurev.marine.010908.163817
|
[12] |
GLENN S, DICKEY T, PARKER B, et al. Long-term real-time coastal ocean observation networks[J]. Oceanography, 2000, 13(1): 24-34. doi: 10.5670/oceanog.2000.50
|
[13] |
陈鹰. 海洋观测方法之研究[J]. 海洋学报, 2019, 41(10): 182-188. doi: 10.3969/j.issn.0253-4193.2019.10.013
CHEN Y. On the ocean observing methodology[J]. Haiyang Xuebao, 2019, 41(10): 182-188. (in Chinese with English abstract doi: 10.3969/j.issn.0253-4193.2019.10.013
|
[14] |
林涛. 近岸海域水质在线自动监测系统的营养盐数据质量控制方法研究[J]. 环境科学与管理, 2013, 38(7): 109-113. doi: 10.3969/j.issn.1673-1212.2013.07.026
LIN T. Nutrients data quality control methods of water quality automatic online monitoring system in Xiamen coastal waters[J]. Environmental Science and Management, 2013, 38(7): 109-113. (in Chinese with English abstract doi: 10.3969/j.issn.1673-1212.2013.07.026
|
[15] |
MACKENZIE B, CELLIERS L, DE FREITAS ASSAD L P, et al. The role of stakeholders in creating societal value from coastal and ocean observations[J]. Frontiers in Marine Science, 2019, 6: 137. doi: 10.3389/fmars.2019.00137
|
[16] |
蔡树群, 张文静, 王盛安. 海洋环境观测技术研究进展[J]. 热带海洋学报, 2007, 26(3): 76-81.
CAI S Q, ZHANG W J, WANG S A. An advance in marine environment observation technology[J]. Journal of Tropical Oceanography, 2007, 26(3): 76-81. (in Chinese with English abstract
|
[17] |
UMEDA A, SHIMIZU E. A wireless based ocean observation buoy system and legal status of underwater radio wave communication in Japan[C]//Anon. OCEANS: MTS/IEEE Kobe Techno-Oceans (OTO). Kobe: [s. n. ], 2018: 1-6.
|
[18] |
王宁, 李燕, 杨鹏程, 等. 海洋生态在线监测技术研究进展[J]. 应用海洋学学报, 2023, 42(1): 178-186. doi: 10.3969/J.ISSN.2095-4972.2023.01.020
WANG N, LI Y, YANG P C, et al. Advances in marine ecological on-line monitoring technology[J]. Journal of Applied Oceanography, 2023, 42(1): 178-186. (in Chinese with English abstract doi: 10.3969/J.ISSN.2095-4972.2023.01.020
|
[19] |
赵吉浩, 高艳波, 朱光文, 等. 海洋观测技术进展[J]. 海洋技术, 2008, 27(4): 1-4.
ZHAO J H, GAO Y B, ZHU G W, et al. Progress in marine observation technology[J]. Ocean Technology, 2008, 27(4): 1-4. (in Chinese with English abstract
|
[20] |
MOORE C, BARNARD A, FIETZEK P, et al. Optical tools for ocean monitoring and research[J]. Ocean Science, 2009, 5(4): 661-684. doi: 10.5194/os-5-661-2009
|
[21] |
孙思萍. 海床基自动监测平台技术的研究应用[J]. 海洋技术, 2003, 22(3): 81-84.
SUN S P. The development and application of automatic seabed-based monitoring platform technology[J]. Ocean Technology, 2003, 22(3): 81-84. (in Chinese with English abstract
|
[22] |
刘方, 丁页, 李俊龙, 等. 近岸海域水质自动监测规范化研究[J]. 中国环境监测, 2016, 32(2): 121-126. doi: 10.3969/j.issn.1002-6002.2016.02.020
LIU F, DING Y, LI J L, et al. Research for standardized and normalization coastal waters automatic monitoring[J]. Environmental Monitoring in China, 2016, 32(2): 121-126. (in Chinese with English abstract doi: 10.3969/j.issn.1002-6002.2016.02.020
|
[23] |
FREELAND H J, ROEMMICH D, GARZOLI S L, et al. ARGO: A decade of progress[C]//HALL J, HARRISON D E, STAMMER D, et al. Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society. [S. l. ]: ESA Publication, 2009.
|
[24] |
于宇, 黄孝鹏, 崔威威, 等. 国外海洋环境观测系统和技术发展趋势[J]. 舰船科学技术, 2017, 39(23): 179-183.
YU Y, HUANG X P, CUI W W, et al. Development trends of foreign marine environment observing systems and technologies[J]. Ship Science and Technology, 2017, 39(23): 179-183. (in Chinese with English abstract
|
[25] |
RANTAJARVI E. Effect of sampling frequency on detection of natural variability in phytoplankton: Unattended high-frequency measurements on board ferries in the Baltic Sea[J]. ICES Journal of Marine Science, 1998, 55(4): 697-704. doi: 10.1006/jmsc.1998.0384
|
[26] |
SMITH L, BARTH J, KELLEY D, et al. The ocean observatories initiative[J]. Oceanography, 2018, 31(1): 16-35. doi: 10.5670/oceanog.2018.105
|
[27] |
STAMEY B, CAREY K, SMITH W, et al. An integrated coastal observation and flood warning system: Rapid prototype development[C]//Anon. OCEANS 2006. Boston, MA, USA: IEEE, 2006: 1-6.
|
[28] |
MOLTMANN T, TURTON J, ZHANG H-M, et al. A global ocean observing system (GOOS), delivered through enhanced collaboration across regions, communities, and new technologies[J]. Frontiers in Marine Science, 2019, 6: 291. doi: 10.3389/fmars.2019.00291
|
[29] |
王春谊, 李芝凤, 吴迪, 等. 美国海洋观测系统分析[J]. 海洋技术, 2012, 31(3): 90-92.
WANG C Y, LI Z F, WU D, et al. Analysis of US ocean observing system[J]. Ocean Technology, 2012, 31(3): 90-92. (in Chinese with English abstract
|
[30] |
王祎, 高艳波, 齐连明, 等. 我国业务化海洋观测发展研究: 借鉴美国综合海洋观测系统[J]. 海洋技术学报, 2014, 33(6): 34-39.
WANG Y, GAO Y B, QI L M, et al. Research on the development of operational ocean observation in China by using the U. S. IOOS for reference[J]. Journal of Ocean Technology, 2014, 33(6): 34-39. (in Chinese with English abstract
|
[31] |
PETTIGREW N R, WALLINGA J P, NEVILLE F P, et al. Gulf of maine ocean observing system (GoMOOS): Current measurement approaches in a prototype integrated ocean observing system[C]//Anon. Proceedings of the IEEE/OES Eighth Working Conference on Current Measurement Technology. Southampton, UK: IEEE, 2005: 127-131.
|
[32] |
PETTIGREW N R, FIKES C P, BEARD M K. Advances in the ocean observing system in the gulf of Maine: Technical capabilities and scientific results[J]. Marine Technology Society Journal, 2011, 45(1): 85-97. doi: 10.4031/MTSJ.45.1.11
|
[33] |
陈令新, 王巧宁, 孙西艳, 等. 海洋环境分析监测技术[M]. 北京: 科学出版社, 2017: 375-377.
CHEN L X, WANG Q N, SUN X Y, et al. Marine environment analysis and monitoring technology[M]. Beijing: Science Press, 2017: 375-377. (in Chinese)
|
[34] |
李慧青, 朱光文, 李燕, 等. 欧洲国家的海洋观测系统及其对我国的启示[J]. 海洋开发与管理, 2011, 28(1): 1-5. doi: 10.3969/j.issn.1005-9857.2011.01.001
LI H Q, ZHU G W, LI Y, et al. Ocean observation system of European countries and its enlightenment to China[J]. Ocean Development and Management, 2011, 28(1): 1-5. (in Chinese with English abstract doi: 10.3969/j.issn.1005-9857.2011.01.001
|
[35] |
JAMES C, COLLOPY M, WYATT L R, et al. Suitability of the southern Australia integrated marine observing system's (SA-IMOS) HF-radar for operational forecasting[J]. Journal of Operational Oceanography, 2019, 12(2): 73-85. doi: 10.1080/1755876X.2019.1567450
|
[36] |
HIDAS M G, PROCTOR R, ATKINS N, et al. Information infrastructure for Australia's integrated marine observing system[J]. Earth Science Informatics, 2016, 9(4): 525-534. doi: 10.1007/s12145-016-0266-2
|
[37] |
O’CALLAGHAN J, STEVENS C, ROUGHAN M, et al. Developing an integrated ocean observing system for New Zealand[J]. Frontiers in Marine Science, 2019, 6: 143.
|
[38] |
MARTÍN MÍGUEZ B, NOVELLINO A, VINCI M, et al. The European marine observation and data network (EMODnet): Visions and roles of the gateway to marine data in Europe[J]. Frontiers in Marine Science, 2019, 6: 313. doi: 10.3389/fmars.2019.00313
|
[39] |
马毅. 我国海洋观测预报系统概述[J]. 海洋预报, 2008, 25(1): 31-40. doi: 10.3969/j.issn.1003-0239.2008.01.006
MA Y. Overview of marine observation and forecast system for China[J]. Marine Forecasts, 2008, 25(1): 31-40. (in Chinese with English abstract doi: 10.3969/j.issn.1003-0239.2008.01.006
|
[40] |
PETERSEN W. FerryBox systems: State-of-the-art in Europe and future development[J]. Journal of Marine Systems, 2014, 140: 4-12. doi: 10.1016/j.jmarsys.2014.07.003
|
[41] |
PETERSEN W, SCHROEDER F, BOCKELMANN F D. FerryBox: Application of continuous water quality observations along transects in the North Sea[J]. Ocean Dynamics, 2011, 61(10): 1541-1554. doi: 10.1007/s10236-011-0445-0
|
[42] |
PETERSEN W, REINKE S, BREITBACH G, et al. FerryBox data in the north sea from 2002 to 2005[J]. Earth System Science Data, 2018, 10(3): 1729-1734. doi: 10.5194/essd-10-1729-2018
|
[43] |
王宁, 程长阔, 杨鹏程, 等. 船载海洋生态在线监测技术研究与应用进展[J]. 海洋科学, 2021, 45(10): 133-140.
WANG N, CHENG C K, YANG P C, et al. Research and application progress of shipborne marine ecological online monitoring technology[J]. Marine Sciences, 2021, 45(10): 133-140. (in Chinese with English abstract
|
[44] |
张伙带, 韩冰, 刘丽强, 等. 海底观测新技术[M]. 北京: 海洋出版社, 2019: 37-111.
ZHANG H D, HAN B, LIU L G, et al. New technologies for seabed observation[M]. Beijing: Ocean Press, 2019: 37-111. (in Chinese)
|
[45] |
王波, 李民, 刘世萱, 等. 海洋资料浮标观测技术应用现状及发展趋势[J]. 仪器仪表学报, 2014, 35(11): 2401-2414.
WANG B, LI M, LIU S X, et al. Current status and trend of ocean data buoy observation technology applications[J]. Chinese Journal of Scientific Instrument, 2014, 35(11): 2401-2414. (in Chinese with English abstract
|
[46] |
MARTIN TAYLOR S. Transformative ocean science through the VENUS and NEPTUNE Canada ocean observing systems[J]. Nuclear Instruments and Methods in Physics Research Section A (Accelerators, Spectrometers, Detectors and Associated Equipment), 2009, 602(1): 63-67.
|
[47] |
吴自军, 周怀阳. 加拿大海底科学长期观测网的研究进展[J]. 工程研究(跨学科视野中的工程), 2016, 8(2): 131-138. doi: 10.3724/SP.J.1224.2016.00131
WU Z J, ZHOU H Y. Research advances of ocean networks of Canada[J]. Journal of Engineering Studies, 2016, 8(2): 131-138. (in Chinese with English abstract doi: 10.3724/SP.J.1224.2016.00131
|
[48] |
姬再良, 董树文. 世界首座海洋观测网体系: 加拿大“海王星” 海底观测技术[J]. 地球学报, 2012, 33(1): 13-22. doi: 10.3975/cagsb.2012.01.03
JI Z L, DONG S W. The first marine observation network system: Neptune Canada submarine observation technology[J]. Acta Geoscientica Sinica, 2012, 33(1): 13-22. (in Chinese with English abstract doi: 10.3975/cagsb.2012.01.03
|
[49] |
陈绍艳, 张多, 麻常雷. 加拿大VENUS海底观测网[J]. 海洋开发与管理, 2015, 32(11): 17-19. doi: 10.3969/j.issn.1005-9857.2015.11.004
CHEN S Y, ZHANG D, MA C L. VENUS undersea observation network of Canada[J]. Ocean Development and Management, 2015, 32(11): 17-19. (in Chinese with English abstract doi: 10.3969/j.issn.1005-9857.2015.11.004
|
[50] |
李健, 陈荣裕, 王盛安, 等. 国际海洋观测技术发展趋势与中国深海台站建设实践[J]. 热带海洋学报, 2012, 31(2): 123-133.
LI J, CHEN R Y, WANG S A, et al. Development of international marine observation system and construction of deep-sea station in China[J]. Journal of Tropical Oceanography, 2012, 31(2): 123-133. (in Chinese with English abstract
|
[51] |
蒋成竹, 张涛, 吴林强, 等. 欧盟海洋探测和观测体系构建现状与发展趋势[J]. 自然资源情报, 2023, 42(6): 29-34. doi: 10.3969/j.issn.1674-3709.2023.06.006
JIANG C Z, ZHANG T, WU L Q, et al. Current situation and development trend of the European Union marine exploration and observation system[J]. Natural Resources Information, 2023, 42(6): 29-34. (in Chinese with English abstract doi: 10.3969/j.issn.1674-3709.2023.06.006
|
[52] |
GASPARIN F, GUINEHUT S, MAO C Y, et al. Requirements for an integrated in situ Atlantic Ocean observing system from coordinated observing system simulation experiments[J]. Frontiers in Marine Science, 2019, 6: 83. doi: 10.3389/fmars.2019.00083
|
[53] |
李风华, 路艳国, 王海斌, 等. 海底观测网的研究进展与发展趋势[J]. 中国科学院院刊, 2019, 34(3): 321-330.
LI F H, LU Y G, WANG H B, et al. Research progress and development trend of seafloor observation network[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(3): 321-330. (in Chinese with English abstract
|
[54] |
PEDERSEN G, ZHANG G S, ANICETO S, et al. Long term acoustic time series of the Lofoten Vesterålen ocean observatory[J]. The Journal of the Acoustical Society of America, 2020, 148(4S): 2627.
|
[55] |
钱洪宝, 徐文, 张杰, 等. 我国海洋监测高技术发展的回顾与思考[J]. 海洋技术学报, 2015, 34(3): 59-63.
QIAN H B, XU W, ZHANG J, et al. Review and deliberation on the development of marine monitoring high technology in China[J]. Journal of Ocean Technology, 2015, 34(3): 59-63. (in Chinese with English abstract
|
[56] |
国家发展改革委国家海洋局. 全国海洋经济发展“十三五”规划[R]. 北京: 国家发展改革委国家海洋局, 2017.
State Oceanic Administration, National Development and Reform Commission. The "13th Five-Year" plan for the development of the national marine economy[R]. Beijing: State Oceanic Administration, National Development and Reform Commission, 2017. (in Chinese)
|
[57] |
王瑞文, 叶冬. 中国近海现场海洋观测系统设计评估[J]. 海洋通报, 2012, 31(2): 121-130. doi: 10.3969/j.issn.1001-6392.2012.02.001
WANG R W, YE D. Assessment on the design of in situ ocean observing system in Chinese marginal seas[J]. Marine Science Bulletin, 2012, 31(2): 121-130. (in Chinese with English abstract doi: 10.3969/j.issn.1001-6392.2012.02.001
|
[58] |
庞仁松, 周凯, 冷科明, 等. 深圳市海域浮标监测网的站位设计和数据应用[J]. 海洋开发与管理, 2018, 35(2): 49-53. doi: 10.3969/j.issn.1005-9857.2018.02.010
PANG R S, ZHOU K, LENG K M, et al. The station design and data application of buoy monitoring network in Shenzhen sea area[J]. Ocean Development and Management, 2018, 35(2): 49-53. (in Chinese with English abstract doi: 10.3969/j.issn.1005-9857.2018.02.010
|
[59] |
戴洪磊, 牟乃夏, 王春玉, 等. 我国海洋浮标发展现状及趋势[J]. 气象水文海洋仪器, 2014, 31(2): 118-121. doi: 10.3969/j.issn.1006-009X.2014.02.032
DAI H L, MOU N X, WANG C Y, et al. Development status and trend of ocean buoy in China[J]. Meteorological, Hydrological and Marine Instruments, 2014, 31(2): 118-121. (in Chinese with English abstract doi: 10.3969/j.issn.1006-009X.2014.02.032
|
[60] |
李斌, 刘保良, 魏春雷. 广西海洋水质监测浮标设计与建设[J]. 科技资讯, 2018, 16(21): 66-68.
LI B, LIU B L, WEI C L. Design and construction of marine water quality monitoring buoy in Guangxi[J]. Science & Technology Information, 2018, 16(21): 66-68. (in Chinese with English abstract
|
[61] |
赵聪蛟, 冯辉强, 祝翔宇, 等. 象山港海洋监测浮标在强台风“海葵” 影响期间的可靠性分析[J]. 热带海洋学报, 2015, 34(2): 8-14. doi: 10.3969/j.issn.1009-5470.2015.02.002
ZHAO C J, FENG H Q, ZHU X Y, et al. Reliability analysis of marine monitoring buoy in the Xiangshan Harbor during Typhoon Haikui (1211)[J]. Journal of Tropical Oceanography, 2015, 34(2): 8-14. (in Chinese with English abstract doi: 10.3969/j.issn.1009-5470.2015.02.002
|
[62] |
赵聪蛟, 孔梅, 孙笑笑, 等. 浙江省海洋水质浮标在线监测系统构建及应用[J]. 海洋环境科学, 2016, 35(2): 288-294.
ZHAO C J, KONG M, SUN X X, et al. Construction and application of the marine online monitoring buoy system in Zhejiang Province[J]. Marine Environmental Science, 2016, 35(2): 288-294. (in Chinese with English abstract
|
[63] |
罗金福, 李天深, 蓝文陆. 近岸海域自动监测网络在广西环境管理服务中的应用[J]. 广西科学院学报, 2019, 35(2): 109-112.
LUO J F, LI T S, LAN W L. Application of automatic monitoring system in offshore area in the environmental management service of Guangxi[J]. Journal of Guangxi Academy of Sciences, 2019, 35(2): 109-112. (in Chinese with English abstract
|
[64] |
周学杭, 张洪海, 马昕, 等. 基于浮标观测的春季青岛近岸海水pCO2变化及海–气CO2通量研究[J]. 海洋学研究, 2023, 41(3): 14-21.
ZHOU X H, ZHANG H H, MA X, et al. Variations of pCO2 and sea-air CO2 flux in Qingdao coastal seawater in spring based on buoy observations[J]. Journal of Marine Sciences, 2023, 41(3): 14-21. (in Chinese with English abstract
|
[65] |
于灏, 吕海良, 关一, 等. 船载海洋生态环境监测系统集成平台设计研究[J]. 船舶工程, 2013, 35(3): 108-111.
YU H, LÜ H L, GUAN Y, et al. Design and study of integrated system of onboard marine ecological environmental monitoring system[J]. Ship Engineering, 2013, 35(3): 108-111. (in Chinese with English abstract
|
[66] |
李晖, 杜军兰, 哈谦, 等. 船载海洋水质自动监测系统研制和应用[J]. 环境影响评价, 2018, 40(6): 67-70.
LI H, DU J L, HA Q, et al. Research and application of shipboard automatic monitoring system for marine water quality[J]. Environmental Impact Assessment, 2018, 40(6): 67-70. (in Chinese with English abstract
|
[67] |
吴亚楠, 王祎, 姜民, 等. 《2019年美国NOAA科学报告》对我国海洋观测网建设与发展的启示[J]. 海洋技术学报, 2021, 40(3): 84-89.
WU Y N, WANG Y, JIANG M, et al. Enlightment on building and developing ocean observation network of China from 2019 NOAA Science Report[J]. Journal of Ocean Technology, 2021, 40(3): 84-89. (in Chinese with English abstract
|
[68] |
张增健, 李程, 徐珊珊, 等. 国外海洋观测系统对我国的启示[J]. 海洋技术学报, 2023, 42(6): 95-104. doi: 10.3969/j.issn.1003-2029.2023.06.012
ZHANG Z J, LI C, XU S S, et al. The enlightenment of foreign ocean observation systems on China[J]. Journal of Ocean Technology, 2023, 42(6): 95-104. (in Chinese with English abstract doi: 10.3969/j.issn.1003-2029.2023.06.012
|
[69] |
DONG C, CHEN D K, WANG D X, et al. Intelligent swift ocean observing system[J]. Ocean-Land-Atmosphere Research, 2023, 2: 22. doi: 10.34133/olar.0022
|
[70] |
翟方国, 李培良, 顾艳镇, 等. 海底有缆在线观测系统研究与应用综述[J]. 海洋科学, 2020, 44(8): 14-28.
ZHAI F G, LI P L, GU Y Z, et al. Review of the research and application of the submarine cable online observation system[J]. Marine Sciences, 2020, 44(8): 14-28. (in Chinese with English abstract
|
[71] |
付龙文, 杜志强, 高歌, 等. 海洋牧场多水层溶解氧在线监测系统的构建及应用[J]. 海洋环境科学, 2020, 39(6): 909-917. doi: 10.12111/j.mes.20190159
FU L W, DU Z Q, GAO G, et al. Construction and application of on-line monitoring system for dissolved oxygen in multi-water layer of marine ranching[J]. Marine Environmental Science, 2020, 39(6): 909-917. (in Chinese with English abstract doi: 10.12111/j.mes.20190159
|
[72] |
贾文娟, 张孝薇, 闫晨阳, 等. 海洋牧场生态环境在线监测物联网技术研究[J]. 海洋科学, 2022, 46(1): 83-89.
JIA W J, ZHANG X W, YAN C Y, et al. Internet of things technology for online monitoring of marine ranch ecological environments[J]. Marine Sciences, 2022, 46(1): 83-89. (in Chinese with English abstract
|
[73] |
熊小飞, 吴加欣, 陈栋, 等. 珊瑚礁生态环境在线监测系统的设计研究[J]. 海洋湖沼通报, 2017, 39(6): 61-66.
XIONG X F, WU J X, CHEN D, et al. Design of an online monitoring system for coral reef ecological environments[J]. Transactions of Oceanology and Limnology, 2017, 39(6): 61-66. (in Chinese with English abstract
|
[74] |
刘春琳, 陈亮, 乔延龙, 等. 天津大神堂牡蛎礁海洋特别保护区监视监控平台应用探讨[J]. 科技资讯, 2016, 14(1): 16-17.
LIU C L, CHEN L, QIAO Y L, et al. Discussion on the application of monitoring platform in Tianjin Dashentang oyster reef marine special reserve[J]. Science & Technology Information, 2016, 14(1): 16-17. (in Chinese with English abstract
|
[75] |
伯云台, 王岚, 姜源庆, 等. 海洋在线水质生态观测系统研究进展[J]. 环境影响评价, 2018, 40(2): 81-85.
BO Y T, WANG L, JIANG Y Q, et al. Advances in study of automatic monitoring system for seawater quality[J]. Environmental Impact Assessment, 2018, 40(2): 81-85. (in Chinese with English abstract
|
[76] |
李鹏, 许啸春, 潘灵芝. 东海海洋环境监测网浮标观测站布设及其科学意义[J]. 上海国土资源, 2014, 35(1): 71-76. doi: 10.3969/j.issn.2095-1329.2014.01.017
LI P, XU X C, PAN L Z. The distribution and scientific significance of marine environmental-monitoring buoys in the East China Sea[J]. Shanghai Land & Resources, 2014, 35(1): 71-76. (in Chinese with English abstract doi: 10.3969/j.issn.2095-1329.2014.01.017
|
[77] |
中华人民共和国生态环境部. 2023中国海洋生态环境状况公报[R]. 北京: 中华人民共和国生态环境部, 2024.
Ministry of Ecology and Environment of People's Republic of China. Bulletin on the status of China's marine ecological environment[R]. Beijing: Ministry of Ecology and Environment of People's Republic of China, 2014. (in Chinese)
|
[78] |
杨颖, 徐韧. 岸/岛基站海洋生态环境在线监测系统建设选址调查方案探讨[J]. 海洋技术学报, 2018, 37(3): 25-29.
YANG Y, XU R. Research and discussion on the site selection survey plan for marine eco-environment online monitoring system built in shore-site stations and island stations[J]. Journal of Ocean Technology, 2018, 37(3): 25-29. (in Chinese with English abstract
|
[79] |
赵聪蛟, 赵斌, 周燕. 基于海洋生态文明及绿色发展的海洋环境实时监测[J]. 海洋开发与管理, 2017, 34(5): 91-97. doi: 10.3969/j.issn.1005-9857.2017.05.016
ZHAO C J, ZHAO B, ZHOU Y. Marine ecological civilization, green development and real-time monitoring of marine environment[J]. Ocean Development and Management, 2017, 34(5): 91-97. (in Chinese with English abstract doi: 10.3969/j.issn.1005-9857.2017.05.016
|
[80] |
陈旭阳, 刘保良. 海洋在线监测浮标在赤潮监测中的应用研究[J]. 热带海洋学报, 2018, 37(5): 20-24.
CHEN X Y, LIU B L. Application of real-time monitoring buoy in monitoring red tide[J]. Journal of Tropical Oceanography, 2018, 37(5): 20-24. (in Chinese with English abstract
|
[81] |
彭模, 周超凡, 郑江鹏, 等. 江苏省离岸式海洋生态环境在线监测系统建设浅析[C]//佚名. 2020 年全国海洋生态环境保护及监测技术研讨会论文集. [出版地不详]: [出版社不详], 2020: 33-37.
PENG M, ZHOU C F, ZHENG J P, et al. A brief analysis of the construction of offshore marine ecological environment online monitoring system in Jiangsu Province[C]//Anon. Proceedings of the 2020 national symposium on marine ecological environment protection and Monitoring technology. [S. l]: [s. n.], 2020: 33-37. (in Chinese)
|
[82] |
李斌, 刘保良, 陈旭阳, 等. 基于海洋生态在线监测浮标数据的钦州湾藻华过程研究[J]. 广西科学, 2021, 28(1): 30-36.
LI B, LIU B L, CHEN X Y, et al. Analysis of algal bloom in Qinzhou Bay based on marine ecology online monitoring buoy data[J]. Guangxi Sciences, 2021, 28(1): 30-36. (in Chinese with English abstract
|
[83] |
赵聪蛟, 刘希真, 付声景, 等. 基于水质浮标在线监测的米氏凯伦藻赤潮过程及环境因子变化特征分析[J]. 热带海洋学报, 2020, 39(2): 88-97.
ZHAO C J, LIU X Z, FU S J, et al. Variation characteristics of the evolution of Karenia Mikimotoi bloom and environmental factors based on online monitoring buoy data[J]. Journal of Tropical Oceanography, 2020, 39(2): 88-97. (in Chinese with English abstract
|
[84] |
李天深, 蓝文陆, 卢印思, 等. 近岸海域自动监测浮标在赤潮预警中的应用及其缺陷[J]. 海洋预报, 2015, 32(1): 70-78.
LI T S, LAN W L, LU Y S, et al. Application of automatic monitoring buoy in early warning for algal blooms in offshore area[J]. Marine Forecasts, 2015, 32(1): 70-78. (in Chinese with English abstract
|
[85] |
李天深, 李远强, 赖春苗, 等. 廉洲湾赤潮自动监测结果与分析[J]. 中国环境监测, 2011, 27(4): 32-35. doi: 10.3969/j.issn.1002-6002.2011.04.008
LI T S, LI Y Q, LAI C M, et al. Analyze red tide with automatic monitoring system of water quality in Lianzhou Gulf[J]. Environmental Monitoring in China, 2011, 27(4): 32-35. (in Chinese with English abstract doi: 10.3969/j.issn.1002-6002.2011.04.008
|
[86] |
庄宏儒. 水质自动监测系统在厦门同安湾赤潮短期预报中的应用[J]. 海洋环境科学, 2006, 25(2): 58-61. doi: 10.3969/j.issn.1007-6336.2006.02.016
ZHUANG H R. Application of automatic monitoring system of water quality on short-term prediction of red tide in Tongan Bay, Xiamen[J]. Marine Environmental Science, 2006, 25(2): 58-61. (in Chinese with English abstract doi: 10.3969/j.issn.1007-6336.2006.02.016
|
[87] |
张文斌, 孙伟, 许歆, 等. 某核电厂附近海域生态环境特征及潜在致灾生物研究[J]. 海洋科学, 2022, 46(7): 32-43.
ZHANG W B, SUN W, XU X, et al. Ecological environment and the potential hazard-causing organisms in the sea area near the nuclear power plant[J]. Marine Sciences, 2022, 46(7): 32-43. (in Chinese with English abstract
|
[88] |
於凡, 许波涛, 吴昕, 等. 基于核电冷源安全的海洋生物调查及筛选评价方法研究[J]. 海洋环境科学, 2021, 40(1): 139-143. doi: 10.12111/j.mes.20190239
YU F, XU B T, WU X, et al. Study on the method of marine organisms investigation, screening and evaluation based on nuclear power plant cold source safety[J]. Marine Environmental Science, 2021, 40(1): 139-143. (in Chinese with English abstract doi: 10.12111/j.mes.20190239
|
[89] |
贺立燕, 宋秀贤, 於凡, 等. 潜在影响防城港核电冷源系统的藻类暴发特点及其监测防控技术[J]. 海洋与湖沼, 2019, 50(3): 700-706.
HE L Y, SONG X X, YU F, et al. Potential risk and prevention of phytoplankton outbreak to water-cooling system in nuclear power plant in Fangchenggang, Guangxi[J]. Oceanologia et Limnologia Sinica, 2019, 50(3): 700-706. (in Chinese with English abstract
|
[90] |
齐占会, 史荣君, 戴明, 等. 尖笔帽螺(Creseis acicula)研究进展及其在大亚湾暴发机制初探[J]. 热带海洋学报, 2021, 40(5): 147-152. doi: 10.11978/2020112
QI Z H, SHI R J, DAI M, et al. A review on ecological characteristics of Creseis acicula and preliminary analysis on its outbreak triggers in Daya Bay[J]. Journal of Tropical Oceanography, 2021, 40(5): 147-152. (in Chinese with English abstract doi: 10.11978/2020112
|
[91] |
於凡, 许波涛, 李勇, 等. 海生物暴发对核电厂冷源系统的影响分析及对策探讨[J]. 给水排水, 2018, 54(2): 61-64.
YU F, XU B T, LI Y, et al. Analysis of the influence of marine organism outbreak on cold source system of nuclear power plant and its countermeasures[J]. Water & Wastewater Engineering, 2018, 54(2): 61-64. (in Chinese with English abstract
|
[92] |
朱鹏光, 甘义群, 赖咏毅, 等. 海南东寨港红树林湿地沉积物氮形态空间分布特征及影响因素[J]. 地质科技通报, 2023, 42(1): 369-377.
ZHU P G, GAN Y Q, LAI Y Y, et al. Spatial distribution and controlling factors of sediment nitrogen forms in the mangrove wetland at Dongzhai Port, Hainan Province[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 369-377. (in Chinese with English abstract
|
[93] |
江汝锋, 曹立成, 邓孝亮, 等. 琼东南盆地宝岛21-1区陵水组沉积特征及其油气地质意义[J]. 地质科技通报, 2024, 43(5): 31-44.
JIANG R F, CAO L C, DENG X L, et al. Sedimentary characteristics of the Lingshui Formation in the Baodao 21-1 area of the Qiongdongnan Basin and their significance in hydrocarbon exploration[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 31-44. (in Chinese with English abstract
|
[94] |
王延欣. 枯竭油气藏储集库储热供暖耦合CO2封存性能分析[J]. 地质科技通报, 2024, 43(3): 12-21.
WANG Y X. Performance analysis of thermal energy storage for space heating and CO2 sequestration in depleted oil and gas reservoirs[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 12-21. (in Chinese with English abstract
|
[95] |
杨泽森, 林晶晶, 常启昕, 等. 地下水与湖泊交互作用的研究趋势与前沿[J]. 地质科技通报, 2024, 43(6): 306-317.
YANG Z S, LIN J J, CHANG Q X, et al. Research trends and frontiers of groundwater-lake interaction[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 306-317. (in Chinese with English abstract
|