Turn off MathJax
Article Contents
KUANG Erlong,CHEN Zhikang,ZHOU Jiangtao,et al. Occurrence of cobalt and its geological significance in the Qibaoshan Co-Pb-Zn deposit, central segment of the Jiangnan orogenic belt[J]. Bulletin of Geological Science and Technology,2025,44(6):1-16 doi: 10.19509/j.cnki.dzkq.tb20240410
Citation: KUANG Erlong,CHEN Zhikang,ZHOU Jiangtao,et al. Occurrence of cobalt and its geological significance in the Qibaoshan Co-Pb-Zn deposit, central segment of the Jiangnan orogenic belt[J]. Bulletin of Geological Science and Technology,2025,44(6):1-16 doi: 10.19509/j.cnki.dzkq.tb20240410

Occurrence of cobalt and its geological significance in the Qibaoshan Co-Pb-Zn deposit, central segment of the Jiangnan orogenic belt

doi: 10.19509/j.cnki.dzkq.tb20240410
More Information
  • Author Bio:

    E-mail:526167758@qq.com

  • Corresponding author: E-mail: liyj@cug.edu.cn
  • Received Date: 23 Jul 2024
  • Accepted Date: 06 Nov 2024
  • Rev Recd Date: 27 Oct 2024
  • Available Online: 28 Oct 2025
  • Objective

    Cobalt is an important strategic metal, crucial for new energy technologies. Understanding its occurrence in ore deposits represents a key focus of international ore deposit research. The Qibaoshan Co-Pb-Zn deposit, located in the central segment of the Jiangnan orogenic belt, features ore bodies controlled by secondary folds within the core of the Gaodongshan anticline, which exhibit NE-trending lenticular or stratoid shapes. However, the occurrence state of cobalt in this deposit remains poorly constrained.

    Methods

    In this study, ore samples collected from different levels of the open pit were analyzed using backscattered electronc (BSE) imaging, energy dispersive X-ray spectroscopy (EDS), and electron probe micro analysis (EPMA).

    Results

    The results show that cobalt occurs predominantly as independent minerals, including safflorite, cobaltite, skutterudite, and siegenite. Minor cobalt is hosted in solid solution within fine-grained pyrite and rammelsbergite. Rammelsbergite commonly exhibits mantles replaced by safflorite, and both minerals are in turn replaced at their rims by cobaltite and gersdorffite. Cobaltite and Cu-bearing siegenite also frequently replace the margins of chalcopyrite. These mineralogical relationships indicate that the early-stage ore-forming fluids were characterized by high arsenic activity, leading to the precipitation of rammelsbergite, safflorite, and skutterudite. As mineralization proceeded, arsenic activity decreased while sulfur activity increased, resulting in the formation of cobaltite and siegenite during the late stage.

    Conclusions

    The replacement textures and mineral assemblages of Co-Ni minerals in the Qibaoshan deposit resemble those typical of "five-element vein"-type deposits. Therefore, the Qibaoshan deposit is classified as a hydrothermal vein-type Co-Pb-Zn deposit with characteristics of "five-element vein".

     

  • loading
  • [1]
    陈骏. 关键金属超常富集成矿和高效利用[J]. 科技导报, 2019, 37(24): 1.

    CHEN J. Metallogenesis and effective utilization of strategic-critical metals[J]. Science & Technology Review, 2019, 37(24): 1. (in Chinese with English abstract
    [2]
    侯增谦, 陈骏, 翟明国. 战略性关键矿产研究现状与科学前沿[J]. 科学通报, 2020, 65(33): 3651-3652. doi: 10.1360/TB-2020-1417

    HOU Z Q, CHEN J, ZHAI M G. Current status and frontiers of research on critical mineral resources[J]. Chinese Science Bulletin, 2020, 65(33): 3651-3652. (in Chinese with English abstract doi: 10.1360/TB-2020-1417
    [3]
    刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社, 1984: 113-137.

    LIU Y J, CAO L M, LI Z L, et al. Geochemistry of element [M]. Beijing: Science Press, 1984: 113-137. (in Chinese)
    [4]
    蒋少涌, 王微. 战略性关键金属是如何发生超常富集成矿的?[J]. 地球科学, 2022, 47(10): 3869-3871.

    JIANG S Y, WANG W. How does the strategic key metal produce super-rich integrated ore?[J]. Earth Science, 2022, 47(10): 3869-3871. (in Chinese)
    [5]
    周家喜, 吕志成, 陈书富, 等. 滇中地区新发现高品位氧化物型钴矿点[J]. 岩石学报, 2024, 40(2): 623-628. doi: 10.18654/1000-0569/2024.02.16

    ZHOU J X, LYU Z C, CHEN S F, et al. Newly discovered high-grade oxidized cobalt ore spot in the central Yunnan Province[J]. Acta Petrologica Sinica, 2024, 40(2): 623-628. (in Chinese with English abstract doi: 10.18654/1000-0569/2024.02.16
    [6]
    苏本勋, 崔梦萌, 袁庆晗, 等. 高温岩浆过程中的钴镍解耦机制及其成矿指示[J]. 岩石学报, 2023, 39(10): 2867-2878. doi: 10.18654/1000-0569/2023.10.01

    SU B X, CUI M M, YUAN Q H, et al. Decoupling of cobalt and nickel in high-temperature magmatic processes and its metallogenic indication[J]. Acta Petrologica Sinica, 2023, 39(10): 2867-2878. (in Chinese with English abstract doi: 10.18654/1000-0569/2023.10.01
    [7]
    张洪瑞, 侯增谦, 杨志明, 等. 钴矿床类型划分初探及其对特提斯钴矿带的指示意义[J]. 矿床地质, 2020, 39(3): 501-510.

    ZHANG H R, HOU Z Q, YANG Z M, et al. A new division of genetic types of cobalt deposits: Implications for Tethyan cobalt-rich belt[J]. Mineral Deposits, 2020, 39(3): 501-510. (in Chinese with English abstract
    [8]
    赵俊兴, 李光明, 秦克章, 等. 富含钴矿床研究进展与问题分析[J]. 科学通报, 2019, 64(24): 2484-2500. doi: 10.1360/N972019-00134

    ZHAO J X, LI G M, QIN K Z, et al. A review of the types and ore mechanism of the cobalt deposits[J]. Chinese Science Bulletin, 2019, 64(24): 2484-2500. (in Chinese with English abstract doi: 10.1360/N972019-00134
    [9]
    付浩, 王加昇, 李金龙, 等. 全球钴矿资源时空分布及成因类型[J]. 地质科技通报, 2024, 43(1): 1-22.

    FU H, WANG J S, LI J L, et al. Spatiotemporal distribution and genesis types of global cobalt resources[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 1-22. (in Chinese with English abstract
    [10]
    WANG Z L, XU D R, CHI G X, et al. Mineralogical and isotopic constraints on the genesis of the Jingchong Co-Cu polymetallic ore deposit in northeastern Hunan Province, South China[J]. Ore Geology Reviews, 2017, 88: 638-654.
    [11]
    WANG Z L, WANG Y F, PENG E K, et al. Micro-textural and chemical fingerprints of hydrothermal cobalt enrichment in the Jingchong Co-Cu polymetallic deposit, South China[J]. Ore Geology Reviews, 2022, 142: 104721. doi: 10.1016/j.oregeorev.2022.104721
    [12]
    ZOU S H, ZOU F H, NING J T, et al. A stand-alone Co mineral deposit in northeastern Hunan Province, South China: Its timing, origin of ore fluids and metal Co, and geodynamic setting[J]. Ore Geology Reviews, 2018, 92: 42-60. doi: 10.1016/j.oregeorev.2017.11.008
    [13]
    PENG E K, KOLB J, WALTER B F, et al. New insights on the formation of the Jingchong Cu-Co-Pb-Zn deposit, South China: Evidence from sphalerite mineralogy and muscovite 40Ar-39Ar dating[J]. Ore Geology Reviews, 2023, 162: 105667. doi: 10.1016/j.oregeorev.2023.105667
    [14]
    陕亮, 黄啸坤, 王川, 等. 湘东北地区井冲钴铜矿床中辉砷钴矿的发现、成因及开发利用价值[J]. 中国地质, 2022, 49(5): 1705-1707.

    SHAN L, HUANG X K, WANG C, et al. Discovery of cobaltite in the Jingchong Co-Cu deposit, northeastern Hunan Province, South China: Implications for ore genesis and exploration[J]. Geology in China, 2022, 49(5): 1705-1707. (in Chinese with English abstract
    [15]
    陕亮, 王川, 康博, 等. 江南造山带中段井冲钴铜矿床成矿时代、流体性质与成矿模式[J]. 大地构造与成矿学, 2024, 48(6): 1299-1314.

    SHAN L, WANG C, KANG B, et al. Mineralization age, fluid properties, and metallogenic model of the Jingchong Co-Cu deposit in the central Jiangnan orogen, South China[J]. Geotectonica et Metallogenia, 2024, 48(6): 1299-1314. (in Chinese with English abstract
    [16]
    REZAZADEH S, HOSSEINZADEH M R, RAITH J G, et al. Mineral chemistry and phase relations of Co-Ni arsenides and sulfarsenides from the Baycheh-Bagh deposit, Zanjan province, Iran[J]. Ore Geology Reviews, 2020, 127: 103836. doi: 10.1016/j.oregeorev.2020.103836
    [17]
    BURISCH M, GERDES A, WALTER B F, et al. Methane and the origin of five-element veins: Mineralogy, age, fluid inclusion chemistry and ore forming processes in the Odenwald, SW Germany[J]. Ore Geology Reviews, 2017, 81: 42-61. doi: 10.1016/j.oregeorev.2016.10.033
    [18]
    TOURNEUR E, CHAUVET A, KOUZMANOV K, et al. Co-Ni-arsenide mineralisation in the Bou Azzer district (Anti-Atlas, Morocco): Genetic model and tectonic implications[J]. Ore Geology Reviews, 2021, 134: 104128. doi: 10.1016/j.oregeorev.2021.104128
    [19]
    WANG H, ZOU S H, WANG Z L, et al. Textural and compositional evolution of quartz and cobalt-bearing minerals from the Wubaoshan deposit, Jiangxi Province, South China: Implications for cobalt mineralization[J]. Ore Geology Reviews, 2024, 170: 106150. doi: 10.1016/j.oregeorev.2024.106150
    [20]
    王智琳, 李世相, 许德如, 等. 湘东北横洞钴矿床钴的富集机制: 来自黄铁矿的微区结构、成分和硫同位素证据[J]. 岩石学报, 2023, 39(9): 2723-2740. doi: 10.18654/1000-0569/2023.09.11

    WANG Z L, LI S X, XU D R, et al. Cobalt enrichment mechanism in the Hengdong cobalt deposit, Northeast Hunan Province: Evidence from texture, chemical composition and sulfur isotopic composition of pyrite[J]. Acta Petrologica Sinica, 2023, 39(9): 2723-2740. (in Chinese with English abstract doi: 10.18654/1000-0569/2023.09.11
    [21]
    WILLIAMS-JONES A E, VASYUKOVA O V. Constraints on the genesis of cobalt deposits: Part I. Theoretical considerations[J]. Economic Geology, 2022, 117(3): 513-528. doi: 10.5382/econgeo.4888
    [22]
    VASYUKOVA O V, WILLIAMS-JONES A E. Constraints on the genesis of Cobalt Deposits: Part II. Applications to natural systems[J]. Economic Geology, 2022, 117(3): 529-544.
    [23]
    李立兴, 李厚民, 丁建华, 等. 东天山维权银铜矿床中钴矿化发现及成因意义[J]. 矿床地质, 2018, 37(4): 778-796.

    LI L X, LI H M, DING J H, et al. The discovery of cobaltite mineralization in Weiquan Ag-Cu deposit, eastern Tianshan Mountains, and its significance[J]. Mineral Deposits, 2018, 37(4): 778-796. (in Chinese with English abstract
    [24]
    张晓平, 吴志华, 陈佳木, 等. 砷在金属矿山中的赋存形态及迁移机制[J]. 地质科技通报, 2022, 41(4): 138-148.

    ZHANG X P, WU Z H, CHEN J M, et al. Occurrence state and migration mechanism of arsenic in metal mines[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 138-148. (in Chinese with English abstract
    [25]
    姜宝亮, 况二龙, 赖长金. 江西省上高县七宝山铅锌钴铁矿床成矿物质来源研究[J]. 世界有色金属, 2024(12): 117-119.

    JIANG B L, KUANG E L, LAI C J. A study on the mineral sources of the qibaoshan lead zinc cobalt iron deposit in Shanggao County, Jiangxi Province[J]. World Nonferrous Metals, 2024(12): 117-119. (in Chinese with English abstract
    [26]
    王学平, 周建廷, 范爱春. 江西省上高县七宝山铅锌铁钴矿床成矿模式[J]. 东华理工大学学报(自然科学版), 2011, 34(3): 248-256.

    WANG X P, ZHOU J T, FAN A C. The metallogenic model of the Qibaoshan lead and zinc iron cobalt deposit in Shanggao County, Jiangxi Province[J]. Journal of East China Institute of Technology (Natural Science), 2011, 34(3): 248-256. (in Chinese with English abstract
    [27]
    孙建东, 李海立, 张雪辉, 等. 赣西七宝山钴铅锌矿床碧玉岩的发现及对矿床成因的制约[J]. 地质通报, 2023, 42(10): 1718-1727.

    SUN J D, LI H L, ZHANG X H, et al. The discovery of jasper rocks in the Qibaoshan cobalt-lead-zinc deposit in western Jiangxi Province and its restriction on the genesis of the deposit[J]. Geological Bulletin of China, 2023, 42(10): 1718-1727. (in Chinese with English abstract
    [28]
    杨明桂, 梅勇文. 钦-杭古板块结合带与成矿带的主要特征[J]. 华南地质与矿产, 1997, 13(3): 52-59.

    YANG M G, MEI Y W. Characteristics of geology and metatllization in the Qinzhou-Hangzhou paleoplate juncture[J]. Geology and Mineral Resources of South China, 1997, 13(3): 52-59. (in Chinese with English abstract
    [29]
    毛景文, 陈懋弘, 袁顺达, 等. 华南地区钦杭成矿带地质特征和矿床时空分布规律[J]. 地质学报, 2011, 85(5): 636-658.

    MAO J W, CHEN M H, YUAN S D, et al. Geological characteristics of the Qinhang (or Shihang) metallogenic belt in South China and spatial-temporal distribution regularity of mineral deposits[J]. Acta Geologica Sinica, 2011, 85(5): 636-658. (in Chinese with English abstract
    [30]
    YAO J L, SHU L S, CAWOOD P A, et al. Delineating and characterizing the boundary of the Cathaysia Block and the Jiangnan orogenic belt in South China[J]. Precambrian Research, 2016, 275: 265-277. doi: 10.1016/j.precamres.2016.01.023
    [31]
    江西省地质矿产勘查开发局. 中国区域地质志·江西志 [M]. 北京: 地质出版社, 2017.

    Jiangxi Provincial Bureau of Geology and Mineral Exploration and Development. China Regional Geology (Jiangxi)[M]. Beijing: Geological publishing house, 2017. (in Chinese)
    [32]
    赵东安, 王国灿, 王先广, 等. 赣西北蒙山地区三叠纪挤压-伸展构造体制转换及其对硅灰石矿的控矿意义[J]. 地球科学, 2023, 48(11): 4053-4071.

    ZHAO D A, WANG G C, WANG X G, et al. Triassic compressional-extensional transition in Mengshan area, NW Jiangxi Province, and its ore-controlling significance for wollastonite deposit[J]. Earth Science, 2023, 48(11): 4053-4071. (in Chinese with English abstract
    [33]
    段政, 廖圣兵, 褚平利, 等. 江南造山带东段新元古代九岭复式岩体锆石U-Pb年代学及构造意义[J]. 中国地质, 2019, 46(3): 493-516.

    DUAN Z, LIAO S B, CHU P L, et al. Zircon U-Pb ages of the Neoproterozoic Jiuling complex granitoid in the eastern segment of the Jiangnan orogen and its tectonic significance[J]. Geology in China, 2019, 46(3): 493-516. (in Chinese with English abstract
    [34]
    ZHONG Y F, MA C Q, ZHANG C, et al. Zircon U-Pb age, Hf isotopic compositions and geochemistry of the Silurian Fengdingshan I-type granite Pluton and Taoyuan mafic-felsic Complex at the southeastern margin of the Yangtze Block[J]. Journal of Asian Earth Sciences, 2013, 74: 11-24. doi: 10.1016/j.jseaes.2013.05.025
    [35]
    ZHONG Y F, MA C Q, LIU L, et al. Ordovician appinites in the Wugongshan Domain of the Cathaysia Block, South China: Geochronological and geochemical evidence for intrusion into a local extensional zone within an intracontinental regime[J]. Lithos, 2014, 198: 202-216.
    [36]
    张垚垚, 刘凯, 何庆成, 等. 江西武功山早古生代花岗岩的岩石学、锆石U-Pb和Lu-Hf同位素地球化学特征及其地质意义[J]. 地质论评, 2023, 69(3): 1004-1020.

    ZHANG Y Y, LIU K, HE Q C, et al. Petrological, zircon U-Pb, Lu-Hf isotopic geochemical characteristics of the Early Paleozoic granites in Wugong Mountain area, Jiangxi Province, and their geological significance[J]. Geological Review, 2023, 69(3): 1004-1020. (in Chinese with English abstract
    [37]
    孙建东, 李海立, 陆凡, 等. 赣西蒙山岩体地球化学、锆石U-Pb年龄、Hf同位素特征及地质意义[J]. 地质与勘探, 2022, 58(1): 96-106.

    SUN J D, LI H L, LU F, et al. Geochemistry, zircon U-Pb ages, and Hf isotopes of the Mengshan rock mass in western Jiangxi Province and their geologic implications[J]. Geology and Exploration, 2022, 58(1): 96-106. (in Chinese with English abstract
    [38]
    OUYANG Y P, ZENG R L, MENG D L, et al. Geochronology and geochemistry characteristics of Dongcao muscovite Muscovite granite in the Yifeng area, Jiangxi Province, China: Implications for petrogenesis and mineralization[J]. Minerals, 2023, 13(4): 503. doi: 10.3390/min13040503
    [39]
    龚敏, 吴俊华, 季浩, 等. 赣西大港花岗岩型锂矿床锂赋存状态及成岩成矿年代学[J]. 地球科学, 2023, 48(12): 4370-4386.

    GONG M, WU J H, JI H, et al. Occurrence of lithium and geochronology of magmatism and mineralization in Dagang granite-associated lithium deposit, West Jiangxi Province[J]. Earth Science, 2023, 48(12): 4370-4386. (in Chinese with English abstract
    [40]
    彭付丰. 江西高安村前铜多金属矿矿床特征及其成因分析[J]. 资源信息与工程, 2016, 31(5): 31-32.

    PENG F F. Characteristics and genesis analysis of Cunqian copper polymetallic deposit in Gaoan, Jiangxi Province[J]. Resource Information and Engineering, 2016, 31(5): 31-32. (in Chinese)
    [41]
    肖艳. 江西省志木山铜多金属矿床地质特征与找矿方向探讨[D]. 南昌: 东华理工大学, 2015.

    XIAO Y. Zhimushan copper polymetallic deposit geological characteristics and prospecting direction in Jiangxi province[D]. Nanchang: East China Institute of Technology, 2015. (in Chinese with English abstract
    [42]
    赖长金, 罗喜成, 钟烜, 等. 江西上高七宝山铅锌钴矿找矿潜力及找矿方向分析[J]. 世界有色金属, 2017(19): 111-113.

    LAI C J, LUO X C, ZHONG X, et al. Ore-prospecting potential and prospecting direction of lead-zinc-cobalt deposit in Qibaoshan of Shanggao Country[J]. World Nonferrous Metals, 2017(19): 111-113. (in Chinese with English abstract
    [43]
    王智琳, 伍杨, 许德如, 等. 湘东北长沙—平江断裂带关键金属钴的赋存状态与成矿规律[J]. 黄金科学技术, 2020, 28(6): 779-785.

    WANG Z L, WU Y, XU D R, et al. Occurrence state and ore-forming regularity of critical metal cobalt in the Changsha-Pingjiang fault zone, northeastern Hunan Province[J]. Gold Science and Technology, 2020, 28(6): 779-785. (in Chinese with English abstract
    [44]
    GAN J, WANG Z L, PENG E K, et al. Cobalt mineralization in the Northeastern Hunan Province of South China: New evidence from the Jintang hydrothermal Co polymetallic ore district[J]. Ore Geology Reviews, 2023, 163: 105799. doi: 10.1016/j.oregeorev.2023.105799
    [45]
    海连富, 张晓军, 孙永亮, 等. 宁夏卫宁北山地区伴生钴矿床地质特征、控矿因素及找矿方向[J]. 地质科技通报, 2024, 43(5): 55-69.

    HAI L F, ZHANG X J, SUN Y L, et al. Geological characteristics, controlling factors and prospecting directions of associated cobalt deposits in the Weiningbeishan area, Ningxia[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 55-69. (in Chinese with English abstract
    [46]
    张连昌, 张爱奎, 刘永乐, 等. 沉积岩-变沉积岩型钴矿研究进展与问题[J]. 岩石学报, 2023, 39(4): 981-997. doi: 10.18654/1000-0569/2023.04.03

    ZHANG L C, ZHANG A K, LIU Y L, et al. Research progress and problems of sedimentary rock-metasedimentary rock type cobalt deposits[J]. Acta Petrologica Sinica, 2023, 39(4): 981-997. (in Chinese with English abstract doi: 10.18654/1000-0569/2023.04.03
    [47]
    邱正杰, 范宏瑞, 杨奎锋, 等. 中条山古元古代沉积岩容矿型铜钴矿床钴来源及富集过程[J]. 岩石学报, 2023, 39(4): 1019-1029. doi: 10.18654/1000-0569/2023.04.05

    QIU Z J, FAN H R, YANG K F, et al. Cobalt sources and enrichment processes of the Paleoproterozoic sedimentary rock-hosted Cu-Co deposits in the Zhongtiao Mountains[J]. Acta Petrologica Sinica, 2023, 39(4): 1019-1029. (in Chinese with English abstract doi: 10.18654/1000-0569/2023.04.05
    [48]
    QIU Z J, FAN H R, GOLDFARB R, et al. Cobalt concentration in a sulfidic sea and mobilization during orogenesis: Implications for targeting epigenetic sediment-hosted Cu-Co deposits[J]. Geochimica et Cosmochimica Acta, 2021, 305: 1-18. doi: 10.1016/j.gca.2021.05.001
    [49]
    PALME H, O’NEILL H S C. Cosmochemical estimates of mantle composition[M]//Holland H D, Turekian K K Treatise on Geochemistry. 2nd Edition. Oxford: Elsevier, 2014, 3: 1-39.
    [50]
    RUDNICK R L, GAO S. Composition of the continental crust[M]//HOLLAND H D, TUREKIAN K K. Treatise on Geochemistry. 2nd Edition. Oxford: Elsevier, 2014, 4: 1-51.
    [51]
    SAINTILAN N J, CREASER R A, BOOKSTROM A A. Re-Os systematics and geochemistry of cobaltite (CoAsS) in the Idaho cobalt belt, Belt-Purcell Basin, USA: Evidence for middle Mesoproterozoic sediment-hosted Co-Cu sulfide mineralization with Grenvillian and Cretaceous remobilization[J]. Ore Geology Reviews, 2017, 86: 509-525. doi: 10.1016/j.oregeorev.2017.02.032
    [52]
    孙宏伟, 王杰, 任军平, 等. 中非加丹加-赞比亚多金属成矿带成矿演化及找矿潜力分析[J]. 地质科技情报, 2019, 38(1): 121-131.

    SUN H W, WANG J, REN J P, et al. Metallogenic evolution and prospecting potential of Katanga-Zambia polymetallic metallogenic belt in Central Africa[J]. Geological Science and Technology Information, 2019, 38(1): 121-131. (in Chinese with English abstract
    [53]
    TAYLOR S R, MCLENNAN S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2): 241-265. doi: 10.1029/95RG00262
    [54]
    单鹏飞, 曹明坚, 赵玉锁, 等. 黑龙江金厂斑岩型富钴矿床钴赋存状态和富集规律研究[J]. 岩石学报, 2023, 39(4): 1157-1171. doi: 10.18654/1000-0569/2023.04.14

    SHAN P F, CAO M J, ZHAO Y S, et al. Occurrence and enrichment of cobalt in Jinchang cobalt-rich porphyry deposit, Heilongjiang Province[J]. Acta Petrologica Sinica, 2023, 39(4): 1157-1171. (in Chinese with English abstract doi: 10.18654/1000-0569/2023.04.14
    [55]
    LI Z, LANG X H, ZHANG Q Z, et al. Petrogenesis and geodynamic implications of the intrusions related to the Pusangguo skarn Cu-dominated polymetallic deposit in Tibet: Constraints from geochronology, geochemistry, and Sr-Nd-Pb-Hf isotopes[J]. Geological Journal, 2020, 55(12): 7659-7686. doi: 10.1002/gj.3902
    [56]
    JIANG J Y, ZHU Y F. Geology and geochemistry of the Jianchaling hydrothermal nickel deposit: T-Ph- f-O2f-S2 conditions and nickel precipitation mechanism[J]. Ore Geology Reviews, 2017, 91: 216-235.
    [57]
    代军治, 陈荔湘, 石小峰, 等. 陕西略阳煎茶岭镍矿床酸性侵入岩形成时代及成矿意义[J]. 地质学报, 2014, 88(10): 1861-1873.

    DAI J Z, CHEN L X, SHI X F, et al. Geochronology of acid intrusive rocks of the Jianchaling nickel deposit in Lueyang, Shaanxi and its metallogenic implications[J]. Acta Geologica Sinica, 2014, 88(10): 1861-1873.
    [58]
    李德东, 王玉往, 石煜, 等. 内蒙古嘎仙镍钴矿区岩浆作用与成矿[J]. 矿床地质, 2018, 37(5): 893-916.

    LI D D, WANG Y W, SHI Y, et al. Magmatism and ore-forming process of Gaxian nickel cobalt deposit, Inner Mongolia[J]. Mineral Deposits, 2018, 37(5): 893-916. (in Chinese with English abstract
    [59]
    王玉往, 陈伟民, 李德东, 等. 内蒙古嘎仙钴镍硫化物矿床的地质特征及成因探讨[J]. 矿产勘查, 2016, 7(1): 72-81.

    WANG Y W, CHEN W M, LI D D, et al. Geological characteristics and genesis of the Gaxian Co-Ni sulfide deposit, Inner Mongolia[J]. Mineral Exploration, 2016, 7(1): 72-81. (in Chinese with English abstract
    [60]
    曹明坚, 单鹏飞, 秦克章. 富钴斑岩型金铜矿床地质特征及存在问题: 以黑龙江金厂矿床为例[J]. 科学通报, 2022, 67(31): 3708-3723. doi: 10.1360/TB-2021-1169

    CAO M J, SHAN P F, QIN K Z. Cobalt-rich characteristics and existing problems of porphyry gold-copper deposit: A case study of Jinchang deposit in Heilongjiang Province[J]. Chinese Science Bulletin, 2022, 67(31): 3708-3723. (in Chinese with English abstract doi: 10.1360/TB-2021-1169
    [61]
    梁贤, 汪方跃, 周涛发, 等. 长江中下游成矿带朱冲富钴矽卡岩型铁矿床的钴成矿机制: 来自原位硫同位素和锆石U-Pb年龄的约束[J]. 岩石学报, 2023, 39(10): 3015-3030. doi: 10.18654/1000-0569/2023.10.10

    LIANG X, WANG F Y, ZHOU T F, et al. Metallogenic mechanism of cobalt in the Zhuchong cobalt-rich skarn iron deposit in the Middle-Lower Yangtze River Valley Metallogenic Belt: Constrained by in situ sulfur isotopes and zircon U-Pb dating[J]. Acta Petrologica Sinica, 2023, 39(10): 3015-3030. (in Chinese with English abstract doi: 10.18654/1000-0569/2023.10.10
    [62]
    张振坤. 赣西七宝山钴铅锌多金属矿床特征与同位素及物质来源分析[D]. 成都: 成都理工大学, 2021.

    ZHANG Z K. The ore characteristics, isotope and analysis of material sources in Qibaoshan Co-Pt-Zn polymetallic deposit, western Jiangxi[D]. Chengdu: Chengdu University of Technology, 2021. (in Chinese with English abstract
    [63]
    STAUDE S, WERNER W, MORDHORST T, et al. Multi-stage Ag-Bi-Co-Ni-U and Cu-Bi vein mineralization at Wittichen, Schwarzwald, SW Germany: Geological setting, ore mineralogy, and fluid evolution[J]. Mineralium Deposita, 2012, 47(3): 251-276. doi: 10.1007/s00126-011-0365-4
    [64]
    李红梅, 李艳军. 三江中北段夏塞Ag-Pb-Zn矿床红锑镍矿的发现及地质意义[J]. 大地构造与成矿学, 2020, 44(3): 422-430.

    LI H M, LI Y J. Identification and geological significance of breithauptite in the Xiasai Ag-Pb-Zn deposit, central-northern Sanjiang metallogenetic belt[J]. Geotectonica et Metallogenia, 2020, 44(3): 422-430. (in Chinese with English abstract
    [65]
    杨奇荻, 黄啸坤, 李堃, 等. 广西金秀龙华镍钴矿床矿石结构及其对矿床成因的启示[J]. 华南地质, 2023, 39(4): 601-616.

    YANG Q D, HUANG X K, LI K, et al. Ore texture from Longhua nickel-cobalt deposit in Jinxiu, Guangxi: Implication for the genesis of the deposit[J]. South China Geology, 2023, 39(4): 601-616. (in Chinese with English abstract
    [66]
    BOYLE R W, JONASSON I R. The geochemistry of arsenic and its use as an indicator element in geochemical prospecting[J]. Journal of Geochemical Exploration, 1973, 2(3): 251-296. doi: 10.1016/0375-6742(73)90003-4
    [67]
    SMEDLEY P L, KINNIBURGH D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5): 517-568. doi: 10.1016/S0883-2927(02)00018-5
    [68]
    PAIKARAY S. Environmental hazards of arsenic associated with black shales: A review on geochemistry, enrichment and leaching mechanism[J]. Reviews in Environmental Science and Bio/Technology, 2012, 11(3): 289-303. doi: 10.1007/s11157-012-9281-z
    [69]
    许德如, 王力, 王智琳, 等. 江西萍乐凹陷构造-沉积演化的基本特征及对找煤预测的启示[J]. 大地构造与成矿学, 2011, 35(4): 513-524.

    XU D R, WANG L, WANG Z L, et al. Tectonic-sedimentary characteristics of the Ping(Pingxiang)-Le(Leping) depression in Jiangxi Province and its implications on coal mineral resource prospecting[J]. Geotectonica et Metallogenia, 2011, 35(4): 513-524. (in Chinese with English abstract
    [70]
    SEWARD T M, WILLIAMS-JONES A E, MIGDISOV A A. The chemistry of metal transport and deposition by ore-forming hydrothermal fluids[M]//HOLLAND H D, TUREKIAN K K. Treatise on Geochemistry. 2nd Edition. Oxford: Elsevier, 2014: 29-57.
    [71]
    WANG S, CAO M J, LI G M, et al. Tracing the genesis of the Zhibula skarn deposit, Tibet, using Co, Te, Au and Ag occurrence[J]. Ore Geology Reviews, 2023, 160: 105601. doi: 10.1016/j.oregeorev.2023.105601
    [72]
    MARKL G, BURISCH M, NEUMANN U. Natural fracking and the genesis of five-element veins[J]. Mineralium Deposita, 2016, 51(6): 703-712. doi: 10.1007/s00126-016-0662-z
    [73]
    GUILCHER M, SCHMAUCKS A, KRAUSE J, et al. Vertical zoning in hydrothermal U-Ag-Bi-Co-Ni-As systems: A case study from the Annaberg-Buchholz District, Erzgebirge (Germany)[J]. Economic Geology, 2021, 116(8): 1893-1915. doi: 10.5382/econgeo.4867
    [74]
    SCHARRER M, KREISSL S, MARKL G. The mineralogical variability of hydrothermal native element-arsenide (five-element) associations and the role of physicochemical and kinetic factors concerning sulfur and arsenic[J]. Ore Geology Reviews, 2019, 113: 103025. doi: 10.1016/j.oregeorev.2019.103025
    [75]
    KREISSL S, GERDES A, WALTER B F, et al. Reconstruction of a>200 Ma multi-stage "five element" Bi-Co-Ni-Fe-As-S system in the Penninic Alps, Switzerland[J]. Ore Geology Reviews, 2018, 95: 746-788. doi: 10.1016/j.oregeorev.2018.02.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(37) PDF Downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return