Turn off MathJax
Article Contents
LIU Shanwei,MA Zhiwei,WEI Shiqing,et al. Rock image lithology recognition method based on lightweight convolutional neural network[J]. Bulletin of Geological Science and Technology,2025,${article_volume}(0):1-11 doi: 10.19509/j.cnki.dzkq.tb20240348
Citation: LIU Shanwei,MA Zhiwei,WEI Shiqing,et al. Rock image lithology recognition method based on lightweight convolutional neural network[J]. Bulletin of Geological Science and Technology,2025,${article_volume}(0):1-11 doi: 10.19509/j.cnki.dzkq.tb20240348

Rock image lithology recognition method based on lightweight convolutional neural network

doi: 10.19509/j.cnki.dzkq.tb20240348
More Information
  • Objective

    Lithology identification is a crucial step in the process of oil and gas detection and exploration, providing important guidance for exploration positioning, reservoir evaluation, and the establishment of reservoir models. However, traditional manual lithology identification methods are time-consuming and labor-intensive. Although classical deep learning models achieve high identification accuracy, they often have a large number of parameters. To enhance model accuracy while reducing the number of parameters, the aim of this research is to make the model suitable for real-time lithology identification.

    Methods

    This paper first collected a dataset of 3016 rock images consisting of eight types of rocks, including dolomite and sandstone. Based on the lightweight convolutional neural network ShuffleNetV2, the paper proposes a Rock-ShuffleNetV2 lithology identification model (hereafter referred to as the RSHFNet model). The model incorporates the Convolutional Block Attention Module (CBAM) and Multi-Scale Feature Fusion Module (MSF) into the basic network to enhance feature extraction capabilities and improve identification performance. Additionally, the number of stacked ShuffleNetV2 units is optimized to reduce the model's parameters.

    Results

    The experimental results show that the RSHFNet model achieved an accuracy of 87.21%, which is a 4.98% improvement over the baseline model. Furthermore, the model's parameters and floating-point operations were reduced to 8.69×106 and 9.3×107, respectively, representing 67% of the model's parameters and 63% of the floating-point operations of the baseline model. This reduction significantly decreases the model's size. Additionally, the RSHFNet model demonstrates superior overall performance compared to existing convolutional neural networks.

    Conclusion

    The proposed RSHFNet lithology identification model offers high recognition accuracy and strong generalization capabilities while being more lightweight, providing a new approach for real-time lithology identification in the field.

     

  • loading
  • [1]
    陈丽,刘娟,王末,等. 中国油料作物能源利用效率与温室气体排放[J]. 中国生态农业学报(中英文),2023,31(12):1984-1996.

    CHEN L,LIU J,WANG M,et al. Energy use efficiency and greenhouse gas emissions of oil crops in China[J]. Chinese Journal of Eco-Agriculture,2023,31(12):1984-1996. (in Chinese with English abstract
    [2]
    ZOU C N,YANG Z,ZHU R K,et al. Progress in China's unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica (English Edition),2015,89(3):938-971. doi: 10.1111/1755-6724.12491
    [3]
    王婷婷,孙振轩,戴金龙,等. 松辽盆地中央坳陷区储层岩性智能识别方法[J]. 吉林大学学报(地球科学版),2023,53(5):1611-1622.

    WANG T T,SUN Z X,DAI J L,et al. Intelligent identification method of reservoir lithology in Central Depression of Songliao Basin[J]. Journal of Jilin University (Earth Science Edition),2023,53(5):1611-1622. (in Chinese with English abstract
    [4]
    胡前泽,王玲利,崔娥. 三塘湖盆地致密油储层评价及成藏主控因素[J]. 大庆石油地质与开发,2013,32(3):164-169. doi: 10.3969/J.ISSN.1000-3754.2013.03.033

    HU Q Z,WANG L L,CUI E. Tight reservoir evaluation of the unconventional oil and study on the main controlling factors of hydrocarbon accumulation in Santanghu Basin[J]. Petroleum Geology & Oilfield Development in Daqing,2013,32(3):164-169. (in Chinese with English abstract doi: 10.3969/J.ISSN.1000-3754.2013.03.033
    [5]
    陈国俊,吕成福,王琪,等. 珠江口盆地深水区白云凹陷储层孔隙特征及影响因素[J]. 石油学报,2010,31(4):566-572. doi: 10.7623/syxb201004008

    CHEN G J,LÜ C F,WANG Q,et al. Characteristics of pore evolution and its controlling factors of Baiyun Sag in deepwater area of Pearl River Mouth Basin[J]. Acta Petrolei Sinica,2010,31(4):566-572. (in Chinese with English abstract doi: 10.7623/syxb201004008
    [6]
    MŁYNARCZUK M,GÓRSZCZYK A,ŚLIPEK B. The application of pattern recognition in the automatic classification of microscopic rock images[J]. Computers & Geosciences,2013,60:126-133.
    [7]
    付光明,严加永,张昆,等. 岩性识别技术现状与进展[J]. 地球物理学进展,2017,32(1):26-40. doi: 10.6038/pg20170104

    FU G M,YAN J Y,ZHANG K,et al. Current status and progress of lithology identification technology[J]. Progress in Geophysics,2017,32(1):26-40. (in Chinese with English abstract doi: 10.6038/pg20170104
    [8]
    MARTIN K G,CARR T R. Developing a quantitative mudrock calibration for a handheld energy dispersive X-ray fluorescence spectrometer[J]. Sedimentary Geology,2020,398:105584. doi: 10.1016/j.sedgeo.2019.105584
    [9]
    SINGH N,SINGH T N,TIWARY A,et al. Textural identification of basaltic rock mass using image processing and neural network[J]. Computational Geosciences,2010,14(2):301-310. doi: 10.1007/s10596-009-9154-x
    [10]
    郭超,刘烨. 多色彩空间下的岩石图像识别研究[J]. 科学技术与工程,2014,14(18):247-251. doi: 10.3969/j.issn.1671-1815.2014.18.048

    GUO C,LIU Y. Recognition of rock images based on multiple color spaces[J]. Science Technology and Engineering,2014,14(18):247-251. (in Chinese with English abstract doi: 10.3969/j.issn.1671-1815.2014.18.048
    [11]
    程国建,殷娟娟. 基于SVM的岩石薄片图像分类[J]. 科技创新与应用,2015,5(1):38.

    CHENG G J,YIN J J. Classification of rock slice images based on SVM[J]. Technology Innovation and Application,2015,5(1):38. (in Chinese)
    [12]
    DENG C X,PAN H P,FANG S N,et al. Support vector machine as an alternative method for lithology classification of crystalline rocks[J]. Journal of Geophysics and Engineering,2017,14(2):341-349. doi: 10.1088/1742-2140/aa5b5b
    [13]
    张驰,潘懋,胡水清,等. 融合储层纵向信息的机器学习岩性识别方法[J]. 地质科技通报,2023,42(3):289-299.

    ZHANG C,PAN M,HU S Q,et al. A machine learning lithologic identification method combined with vertical reservoir information[J]. Bulletin of Geological Science and Technology,2023,42(3):289-299. (in Chinese with English abstract
    [14]
    SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. 2014:1409.1556. https://api.semanticscholar.org/CorpusID:14124313.
    [15]
    HE K M,ZHANG X Y,REN S Q,et al. Deep residual learning for image recognition[C]//Anon 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). [S.l.]: IEEE,2016:770-778.
    [16]
    MA N N,ZHANG X Y,ZHENG H T,et al. ShuffleNet V2:Practical guidelines for efficient CNN architecture design[M]//Anon. Computer vision–ECCV 2018. Cham:Springer International Publishing,2018:122-138.
    [17]
    WANG C Y,BOCHKOVSKIY A,LIAO H M. YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Anon. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). [S.l.]:IEEE,2023:7464-7475.
    [18]
    程国建,郭文惠,范鹏召. 基于卷积神经网络的岩石图像分类[J]. 西安石油大学学报(自然科学版),2017,32(4):116-122. doi: 10.3969/j.issn.1673-064X.2017.04.020

    CHENG G J,GUO W H,FAN P Z. Study on rock image classification based on convolution neural network[J]. Journal of Xi’an Shiyou University (Natural Science Edition),2017,32(4):116-122. (in Chinese with English abstract doi: 10.3969/j.issn.1673-064X.2017.04.020
    [19]
    李娜,顾庆,姜枫,等. 一种基于卷积神经网络的砂岩显微图像特征表示方法[J]. 软件学报,2020,31(11):3621-3639.

    LI N,GU Q,JIANG F,et al. Feature representation method of microscopic sandstone images based on convolutional neural network[J]. Journal of Software,2020,31(11):3621-3639. (in Chinese with English abstract
    [20]
    谭永健,田苗,徐德馨,等. 基于Xception网络的岩石图像分类识别研究[J]. 地理与地理信息科学,2022,38(3):17-22. doi: 10.3969/j.issn.1672-0504.2022.03.003

    TAN Y J,TIAN M,XU D X,et al. Rock image classified identification based on xception network[J]. Geography and Geo-Information Science,2022,38(3):17-22. (in Chinese with English abstract doi: 10.3969/j.issn.1672-0504.2022.03.003
    [21]
    RAN X J,XUE L F,ZHANG Y Y,et al. Rock classification from field image patches analyzed using a deep convolutional neural network[J]. Mathematics,2019,7(8):755. doi: 10.3390/math7080755
    [22]
    马泽栋,马雷,李科,等. 基于岩石图像深度学习的多尺度岩性识别[J]. 地质科技通报,2022,41(6):316-322.

    MA Z D,MA L,LI K,et al. Multi-scale lithology recognition based on deep learning of rock images[J]. Bulletin of Geological Science and Technology,2022,41(6):316-322. (in Chinese with English abstract
    [23]
    SZEGEDY C,LIU W,JIA Y Q,et al. Going deeper with convolutions[C]//Anon. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). $ [\mathrm{S}. \mathrm{l}. ]: $ IEEE,2015:1-9.
    [24]
    高广尚. 深度学习推荐模型中的注意力机制研究综述[J]. 计算机工程与应用,2022,58(9):9-18. doi: 10.3778/j.issn.1002-8331.2112-0382

    GAO G S. Survey on attention mechanisms in deep learning recommendation models[J]. Computer Engineering and Applications,2022,58(9):9-18. (in Chinese with English abstract doi: 10.3778/j.issn.1002-8331.2112-0382
    [25]
    WOO S,PARK J,LEE J Y,et al. CBAM:Convolutional block attention module[M]//Anon. Computer vision–ECCV 2018. Cham:Springer International Publishing,2018:3-19.
    [26]
    HUANG G,SUN Y,LIU Z,et al. Deep networks with stochastic depth[M]//Anon. Computer vision–ECCV 2016. Cham:Springer International Publishing,2016:646-661.
    [27]
    马永生,蔡勋育,赵培荣. 深层、超深层碳酸盐岩油气储层形成机理研究综述[J]. 地学前缘,2011,18(4):181-192.

    MA Y S,CAI X Y,ZHAO P R. The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir[J]. Earth Science Frontiers,2011,18(4):181-192. (in Chinese with English abstract
    [28]
    盛双占,潘海峰,石湘,等. 吐哈盆地胜北凹陷三间房组致密砂岩气藏沉积特征及有利区优选[J]. 地质科技通报,2024,43(4):181-190.

    SHENG S Z,PAN H F,SHI X,et al. Sedimentary characteristics and favourable area selection of tight sandstone gas reservoirs in the Sanjianfang Formation of the Shengbei Depression,Tuha Basin[J]. Bulletin of Geological Science and Technology,2024,43(4):181-190. (in Chinese with English abstract
    [29]
    付小平,刘苗苗. 涪陵地区凉高山组富有机质泥岩微相特征及油气富集规律[J]. 断块油气田,2023,30(2):230-237.

    FU X P,LIU M M. Microfacies characteristics of organic-rich mudstone and oil and gas enrichment law of Lianggaoshan Formation in Fuling area[J]. Fault-Block Oil & Gas Field,2023,30(2):230-237. (in Chinese with English abstract
    [30]
    SHORTEN C,KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data,2019,6(1):60. doi: 10.1186/s40537-019-0197-0
    [31]
    袁硕,刘玉敏,安志伟,等. 基于改进ShuffleNetV2网络的岩石图像识别[J]. 吉林大学学报(信息科学版),2023,41(3):450-458. doi: 10.3969/j.issn.1671-5896.2023.03.009

    YUAN S,LIU Y M,AN Z W,et al. Rock image recognition based on improved ShuffleNetV2 network[J]. Journal of Jilin University (Information Science Edition),2023,41(3):450-458. (in Chinese with English abstract doi: 10.3969/j.issn.1671-5896.2023.03.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(259) PDF Downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return