Turn off MathJax
Article Contents
WANG Qinghua,CAI Zhenzhong,PING Hongwei,et al. Geochemical characteristics, charging differences, and controlling factors of the Ordovician crude oil in the FI17 strike-slip fault zone of the Fuman oilfield, Tarim Basin[J]. Bulletin of Geological Science and Technology,2025,44(5):1-16 doi: 10.19509/j.cnki.dzkq.tb20240159
Citation: WANG Qinghua,CAI Zhenzhong,PING Hongwei,et al. Geochemical characteristics, charging differences, and controlling factors of the Ordovician crude oil in the FI17 strike-slip fault zone of the Fuman oilfield, Tarim Basin[J]. Bulletin of Geological Science and Technology,2025,44(5):1-16 doi: 10.19509/j.cnki.dzkq.tb20240159

Geochemical characteristics, charging differences, and controlling factors of the Ordovician crude oil in the FI17 strike-slip fault zone of the Fuman oilfield, Tarim Basin

doi: 10.19509/j.cnki.dzkq.tb20240159
More Information
  • Author Bio:

    E-mail:wqh-tlm@petrochina.com.cn

  • Corresponding author: E-mail:howping@qq.cn
  • Received Date: 11 Apr 2024
  • Accepted Date: 25 Mar 2025
  • Rev Recd Date: 13 Jan 2025
  • Available Online: 16 Sep 2025
  • Objective

    The Fuman oilfield has significant potential for oil and gas exploration, and is a key area for increased oil reserves and production in the Tarim oilfield. Analyzing the source, thermal maturity, and charging process of crude oils in this area is essential for understanding the hydrocarbon accumulation patterns, enrichment laws, and guiding future exploration activities.

    Methods

    Based on systematic organic geochemical analysis of 15 crude oil samples and fluid inclusion samples from three wells, as well as the orientation segmentation and active phases of the strike-slip fault, this study examines the geochemical characteristics of crude oils, hydrocarbon charging processes, and their main controlling factors in the FI17 strike-slip fault zone.

    Results

    The results show that the crude oil in this fault zone is derived from the Lower Cambrian Yurtus source rocks. The equivalent vitrinite reflectance value of the crude oil, calculated from aromatic parameters, ranges from 0.80% to 1.20%. The crude oil has undergone relatively weak thermal chemical sulfate reduction (TSR), gas stripping, and oil cracking. The fault zone and its periphery have experienced three stages of oil charging with different maturities: Late Caledonian, Late Hercynian, and Himalayan periods, and the gas charging occurred during the Himalayan period. However, there are differences in oil maturity within the same period between the northern and southern segments. The northern and middle segments are mainly dominated by oil contributions from the second stage (blue-green fluorescence) and third stage (bright-blue fluorescence), however, the southern segment is predominantly charged by the second-stage oil with bright-blue fluorescence and the Himalayan-period gas invasion altering pro-existing oil. The FI17 strike-slip fault zone exhibits a north-to-south increasing gradient in the oil thermal maturity, gas stripping intensity, oil cracking degree and contribution of late-stage hydrocarbons.

    Conclusion

    This spatial variation is governed by fault activity intensity that intensifies southward, which is stronger in the south and weaker in the north. This study suggests the likely presence of deeper, late-stage high maturity hydrocarbons in the northern and middle sections of the fault zone, and the current exploration depth has not yet reached the lower limit of liquid hydrocarbon occurrence. Therefore, deeper reservoirs still have significant potential for oil and gas exploration.

     

  • loading
  • [1]
    杨海军, 蔡振忠, 李勇, 等. 塔里木盆地富满地区吐木休克组烃源岩有机地球化学特征及其油气勘探意义[J]. 地质科技通报, 2024, 43(3): 81-93.

    YANG H J, CAI Z Z, LI Y, et al. Organic geochemical characters of source rock and significance for exploration of the Tumuxiuke Formation in Fuman area, Tarim Basin[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 81-93. (in Chinese with English abstract
    [2]
    田军, 杨海军, 朱永峰, 等. 塔里木盆地富满油田成藏地质条件及勘探开发关键技术[J]. 石油学报, 2021, 42(8): 971-985. doi: 10.7623/syxb202108001

    TIAN J, YANG H J, ZHU Y F, et al. Geological conditions for hydrocarbon accumulation and key technologies for exploration and development in Fuman oilfield, Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(8): 971-985. (in Chinese with English abstract doi: 10.7623/syxb202108001
    [3]
    王清华. 塔里木盆地富满油田凝析气藏成因[J]. 石油勘探与开发, 2023, 50(6): 1128-1139. doi: 10.11698/PED.20230301

    WANG Q H. Origin of gas condensate reservoir in Fuman oilfield, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2023, 50(6): 1128-1139. (in Chinese with English abstract doi: 10.11698/PED.20230301
    [4]
    马安来, 漆立新. 顺北地区四号断裂带奥陶系超深层油气地球化学特征与相态差异性成因[J]. 地学前缘, 2023, 30(6): 247-262.

    MA A L, QI L X. Geochemical characteristics and phase behavior of the Ordovician ultra-deep reservoir fluid, No. 4 fault, northern Shuntuoguole, Tarim Basin[J]. Earth Science Frontiers, 2023, 30(6): 247-262. (in Chinese with English abstract
    [5]
    刘雨晴, 邓尚. 板内中小滑移距走滑断裂发育演化特征精细解析: 以塔里木盆地顺北4号走滑断裂为例[J]. 中国矿业大学学报, 2022, 51(1): 124-136. doi: 10.3969/j.issn.1000-1964.2022.1.zgkydxxb202201012

    LIU Y Q, DENG S. Structural analysis of intraplate strike-slip faults with small to medium displacement: A case study of the Shunbei 4 fault, Tarim Basin[J]. Journal of China University of Mining & Technology, 2022, 51(1): 124-136. (in Chinese with English abstract doi: 10.3969/j.issn.1000-1964.2022.1.zgkydxxb202201012
    [6]
    李映涛, 邓尚, 张继标, 等. 深层致密碳酸盐岩走滑断裂带核带结构与断控储集体簇状发育模式: 以塔里木盆地顺北4号断裂带为例[J]. 地学前缘, 2023, 30(6): 80-94.

    LI Y T, DENG S, ZHANG J B, et al. Fault zone architecture of strike-slip faults in deep, tight carbonates and development of reservoir clusters under fault control: A case study in Shunbei, Tarim Basin[J]. Earth Science Frontiers, 2023, 30(6): 80-94. (in Chinese with English abstract
    [7]
    宋刚, 李海英, 叶宁, 等. 塔里木盆地顺托果勒低隆起顺北4号走滑断裂带成岩流体类型及活动特征[J]. 石油实验地质, 2022, 44(4): 603-612. doi: 10.11781/sysydz202204603

    SONG G, LI H Y, YE N, et al. Types and features of diagenetic fluids in Shunbei No. 4 strike-slip fault zone in Shuntuoguole Low Uplift, Tarim Basin[J]. Petroleum Geology & Experiment, 2022, 44(4): 603-612. (in Chinese with English abstract doi: 10.11781/sysydz202204603
    [8]
    彭威龙, 邓尚, 张继标, 等. 深层海相凝析油气藏成因机制与富集主控因素: 以塔里木盆地顺北4号断裂带为例[J]. 天然气地球科学, 2024, 35(5): 838-850. doi: 10.11764/j.issn.1672-1926.2024.04.008

    PENG W L, DENG S, ZHANG J B, et al. Genetic mechanism and main controlling factors of deep marine condensate reservoirs: A case study of the Shunbei No. 4 fault zone in Tarim Basin, NW China[J]. Natural Gas Geoscience, 2024, 35(5): 838-850. (in Chinese with English abstract doi: 10.11764/j.issn.1672-1926.2024.04.008
    [9]
    LU Z D, PING H W, CHEN H H, et al. Geochemical characteristics of Ordovician crude oils in the FI17 strike-slip fault zone of the Fuman oilfield, Tarim Basin: Implications for ultra-deep hydrocarbon accumulation in the Tarim Basin[J]. Marine and Petroleum Geology, 2024, 163: 106800. doi: 10.1016/j.marpetgeo.2024.106800
    [10]
    刘强, 张银涛, 陈石, 等. 塔里木盆地走滑断裂发育演化特征精细解析及其地质意义: 以富满油田FI17断裂为例[J]. 现代地质, 2023, 37(5): 1123-1135.

    LIU Q, ZHANG Y T, CHEN S, et al. Development and evolution characteristics of strike-slip faults in Tarim Basin and its geological significance: A case study of FI17 fault in Fuman oilfield[J]. Geoscience, 2023, 37(5): 1123-1135. (in Chinese with English abstract
    [11]
    金之钧, 刘全有, 云金表, 等. 塔里木盆地环满加尔凹陷油气来源与勘探方向[J]. 中国科学(地球科学), 2017, 47(3): 310-320.

    JIN Z J, LIU Q Y, YUN J B, et al. Potential petroleum sources and exploration directions around the Manjar Sag in the Tarim Basin[J]. Science China (Earth Sciences), 2017, 47(3): 310-320.
    [12]
    石平舟, 李婷, 朱永峰, 等. 缝洞充填物地球化学特征及环境指示意义: 以塔里木盆地富满地区中奥陶统一间房组为例[J]. 科学技术与工程, 2023, 23(11): 4527-4535.

    SHI P Z, LI T, ZHU Y F, et al. Geochemical characteristics and environmental implications of fracture-cave fillings: A case study of the Middle Ordovician Yijianfang Formation in Fuman area, Tarim Basin[J]. Science Technology and Engineering, 2023, 23(11): 4527-4535. (in Chinese with English abstract
    [13]
    LU Z D, CHEN Z L, LIU Y, et al. A small-scale neutral alumina column chromatography method for carbon isotope determination of hopanes in crude oils or rock extracts[J]. Journal of Chromatography A, 2023, 1689: 463729. doi: 10.1016/j.chroma.2022.463729
    [14]
    PING H W, CHEN H H, GEORGE S C. Quantitatively predicting the thermal maturity of oil trapped in fluid inclusions based on fluorescence and molecular geochemical data of oil inclusions in the Dongying Depression, Bohai Bay Basin, China[J]. AAPG Bulletin, 2020, 104(8): 1751-1791.
    [15]
    PING H W, LI C Q, CHEN H H, et al. Overpressure release: Fluid inclusion evidence for a new mechanism for the formation of heavy oil[J]. Geology, 2020, 48(8): 803-807. doi: 10.1130/G47227.1
    [16]
    MUNZ I A. Petroleum inclusions in sedimentary basins: Systematics, analytical methods and applications[J]. Lithos, 2001, 55(1/2/3/4): 195-212.
    [17]
    RADKE M. Application of aromatic compounds as maturity indicators in source rocks and crude oils[J]. Marine and Petroleum Geology, 1988, 5(3): 224-236. doi: 10.1016/0264-8172(88)90003-7
    [18]
    KVALHEIM O M, CHRISTY A A, TELNÆS N, et al. Maturity determination of organic matter in coals using the methylphenanthrene distribution[J]. Geochimica et Cosmochimica Acta, 1987, 51(7): 1883-1888. doi: 10.1016/0016-7037(87)90179-7
    [19]
    陈琰, 包建平, 刘昭茜, 等. 甲基菲指数及甲基菲比值与有机质热演化关系: 以柴达木盆地北缘地区为例[J]. 石油勘探与开发, 2010, 37(4): 508-512.

    CHEN Y, BAO J P, LIU Z Q, et al. Relationship between methylphenanthrene index, methylphenanthrene ratio and organic thermal evolution: Take the northern margin of Qaidam Basin as an example[J]. Petroleum Exploration and Development, 2010, 37(4): 508-512. (in Chinese with English abstract
    [20]
    LOSH S, CATHLES L, MEULBROEK P. Gas washing of oil along a regional transect, offshore Louisiana[J]. Organic Geochemistry, 2002, 33(6): 655-663. doi: 10.1016/S0146-6380(02)00025-6
    [21]
    TEN HAVEN H L, DE LEEUW J W, RULLKÖTTER J, et al. Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator[J]. Nature, 1987, 330: 641-643.
    [22]
    TEN HAVEN H L, RULLKÖTTER J, DE LEEUW J W, et al. Pristane/phytane ratio as environmental indicator[J]. Nature, 1988, 333: 604.
    [23]
    PETERS K E, WALTERS C C, MOLDOWAN J M. The biomarker guide[M]. Cambridge, UK: Cambridge University Press, 2005.
    [24]
    ZHU X K, WANG Z C, CHEN H Y. Advances in isotope geochronology and isotope geochemistry: A preface[J]. Journal of Earth Science, 2022, 33(1): 1-4. doi: 10.1007/s12583-021-1605-x
    [25]
    GALIMOV E M. Isotope organic geochemistry[J]. Organic Geochemistry, 2006, 37(10): 1200-1262. doi: 10.1016/j.orggeochem.2006.04.009
    [26]
    张科, 苏劲, 陈永权, 等. 塔里木盆地寒武系: 奥陶系烃源岩油源特征与超深层油气来源[J]. 地质学报, 2023, 97(6): 2026-2041.

    ZHANG K, SU J, CHEN Y Q, et al. The biogeochemical features of the Cambrian-Ordovician source rocks and origin of ultra-deep hydrocarbons in the Tarim Basin[J]. Acta Geologica Sinica, 2023, 97(6): 2026-2041. (in Chinese with English abstract
    [27]
    ZHU G Y, MILKOV A V, LI J F, et al. Deepest oil in Asia: Characteristics of petroleum system in the Tarim Basin, China[J]. Journal of Petroleum Science and Engineering, 2021, 199: 108246. doi: 10.1016/j.petrol.2020.108246
    [28]
    BJORÓY M, HALL P B, HUSTAD E, et al. Variation in stable carbon isotope ratios of individual hydrocarbons as a function of artificial maturity[J]. Organic Geochemistry, 1992, 19(1/2/3): 89-105.
    [29]
    WAPLES D, MACHIHARA T. Biomarkers for geologists: A practical guide to the application of steranes and triterpanes in petroleum geology[M]. Tulsa, Okla. , USA: American Association of Petroleum Geologists, 1991.
    [30]
    SEIFERT W K, MOLDOWAN J M. Use of biological markers in petroleum exploration[J]. Methods in Geochemistry and Geophysics, 1986, 24: 261-290.
    [31]
    BEIN A, SOFFER Z. Origin of oils in Helez region, Israel: Implications for exploration in the eastern Mediterranean[J]. AAPG Bulletin, 1987, 71(1): 65-75.
    [32]
    CASSANI F, GALLANGO O, TALUKDAR S, et al. Methylphenanthrene maturity index of marine source rock extracts and crude oils from the Maracaibo Basin[J]. Organic Geochemistry, 1988, 13(1/2/3): 73-80.
    [33]
    朱光有, 张水昌, 梁英波, 等. 硫酸盐热化学还原反应对烃类的蚀变作用[J]. 石油学报, 2005, 26(5): 48-52.

    ZHU G Y, ZHANG S C, LIANG Y B, et al. Alteration of thermochemical sulfate reduction to hydrocarbons[J]. Acta Petrolei Sinica, 2005, 26(5): 48-52. (in Chinese with English abstract
    [34]
    张水昌, 朱光有, 何坤. 硫酸盐热化学还原作用对原油裂解成气和碳酸盐岩储层改造的影响及作用机制[J]. 岩石学报, 2011, 27(3): 809-826.

    ZHANG S C, ZHU G Y, HE K. The effects of thermochemical sulfate reduction on occurrence of oil-cracking gas and reformation of deep carbonate reservoir and the interaction mechanisms[J]. Acta Petrologica Sinica, 2011, 27(3): 809-826. (in Chinese with English abstract
    [35]
    MANGO F D. An invariance in the isoheptanes of petroleum[J]. Science, 1987, 237: 514-517. doi: 10.1126/science.237.4814.514
    [36]
    SONG D F, ZHANG C M, LI S M, et al. Elevated mango's K1 values resulting from thermochemical sulfate reduction within the Tazhong oils, Tarim Basin[J]. Energy & Fuels, 2017, 31(2): 1250-1258.
    [37]
    CAI C F, HU W S, WORDEN R H. Thermochemical sulphate reduction in Cambro–Ordovician carbonates in central Tarim[J]. Marine and Petroleum Geology, 2001, 18(6): 729-741. doi: 10.1016/S0264-8172(01)00028-9
    [38]
    马安来, 金之钧, 朱翠山, 等. 塔里木盆地麦盖提斜坡罗斯2井奥陶系油气藏的TSR作用: 来自分子标志物的证据[J]. 石油与天然气地质, 2018, 39(4): 730-737. doi: 10.11743/ogg20180410

    MA A L, JIN Z J, ZHU C S, et al. Effect of TSR on the crude oil in Ordovician reservoirs of Well Luosi-2 from Maigaiti Slope, Tarim Basin: Evidences from molecular markers[J]. Oil & Gas Geology, 2018, 39(4): 730-737. (in Chinese with English abstract doi: 10.11743/ogg20180410
    [39]
    ZHANG S C, HUANG H P, SU J, et al. Geochemistry of Paleozoic marine petroleum from the Tarim Basin, NW China: Part 5. Effect of maturation, TSR and mixing on the occurrence and distribution of alkyldibenzothiophenes[J]. Organic Geochemistry, 2015, 86: 5-18. doi: 10.1016/j.orggeochem.2015.05.008
    [40]
    THOMPSON K F M. Gas-condensate migration and oil fractionation in deltaic systems[J]. Marine and Petroleum Geology, 1988, 5(3): 237-246. doi: 10.1016/0264-8172(88)90004-9
    [41]
    LARTER S, MILLS N. Phase-controlled molecular fractionations in migrating petroleum charges[J]. Geological Society, London, Special Publications, 1991, 59(1): 137-147. doi: 10.1144/GSL.SP.1991.059.01.10
    [42]
    LOSH S, CATHLES L. Phase fractionation and oil-condensate mass balance in the South Marsh Island Block 208-239 area, offshore Louisiana[J]. Marine and Petroleum Geology, 2010, 27(2): 467-475. doi: 10.1016/j.marpetgeo.2009.10.004
    [43]
    PING H W, CHEN H H, ZHAI P Q, et al. Petroleum charge history in the Baiyun Depression and Panyu Lower Uplift in the Pearl River Mouth Basin, northern South China Sea: Constraints from integration of organic geochemical and fluid inclusion data[J]. AAPG Bulletin, 2019, 103(6): 1401-1442. doi: 10.1306/11151817369
    [44]
    贾承造, 张水昌. 中国海相超深层油气形成[J]. 地质学报, 2023, 97(9): 2775-2801.

    JIA C Z, ZHANG S C. The formation of marine ultra-deep petroleum in China[J]. Acta Geologica Sinica, 2023, 97(9): 2775-2801. (in Chinese with English abstract
    [45]
    ZHU G Y, MILKOV A V, CHEN F R, et al. Non-cracked oil in ultra-deep high-temperature reservoirs in the Tarim Basin, China[J]. Marine and Petroleum Geology, 2018, 89: 252-262. doi: 10.1016/j.marpetgeo.2017.07.019
    [46]
    DAHL J E, MOLDOWAN J M, PETERS K E, et al. Diamondoid hydrocarbons as indicators of natural oil cracking[J]. Nature, 1999, 399: 54-57. doi: 10.1038/19953
    [47]
    MOLDOWAN J M (, DAHL J, ZINNIKER D, et al. Underutilized advanced geochemical technologies for oil and gas exploration and production: 1. The diamondoids[J]. Journal of Petroleum Science and Engineering, 2015, 126: 87-96. doi: 10.1016/j.petrol.2014.11.010
    [48]
    PING H W, CHEN H H, THIÉRY R, et al. Effects of oil cracking on fluorescence color, homogenization temperature and trapping pressure reconstruction of oil inclusions from deeply buried reservoirs in the northern Dongying Depression, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2017, 80: 538-562. doi: 10.1016/j.marpetgeo.2016.12.024
    [49]
    平宏伟, 陈红汉, 宋国奇, 等. 油气充注成藏贡献度及其意义[J]. 地球科学(中国地质大学学报), 2012, 37(1): 163-170.

    PING H W, CHEN H H, SONG G Q, et al. Contributions degree of petroleum charging to oil and gas accumulation and its significance[J]. Earth Science (Journal of China University of Geosciences), 2012, 37(1): 163-170. (in Chinese with English abstract
    [50]
    PING H W, CHEN H H, JIA G H. Petroleum accumulation in the deeply buried reservoirs in the northern Dongying Depression, Bohai Bay Basin, China: New insights from fluid inclusions, natural gas geochemistry, and 1-D basin modeling[J]. Marine and Petroleum Geology, 2017, 80: 70-93. doi: 10.1016/j.marpetgeo.2016.11.023
    [51]
    陈红汉. 我国大型克拉通叠合盆地的走滑构造与油气聚集研究进展[J]. 地球科学, 2023, 48(6): 2039-2066.

    CHEN H H. Advances on relationship between strike-slip structures and hydrocarbon accumulations in large superimposed craton basins, China[J]. Earth Science, 2023, 48(6): 2039-2066. (in Chinese with English abstract
    [52]
    漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(1): 102-111. doi: 10.3969/j.issn.1672-7703.2020.01.010

    QI L X. Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei area of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(1): 102-111. (in Chinese with English abstract doi: 10.3969/j.issn.1672-7703.2020.01.010
    [53]
    云露. 顺北东部北东向走滑断裂体系控储控藏作用与突破意义[J]. 中国石油勘探, 2021, 26(3): 41-52. doi: 10.3969/j.issn.1672-7703.2021.03.004

    YUN L. Controlling effect of NE strike-slip fault system on reservoir development and hydrocarbon accumulation in the eastern Shunbei area and its geological significance, Tarim Basin[J]. China Petroleum Exploration, 2021, 26(3): 41-52. (in Chinese with English abstract doi: 10.3969/j.issn.1672-7703.2021.03.004
    [54]
    王清华, 杨海军, 李勇, 等. 塔里木盆地富满大型碳酸盐岩油气聚集区走滑断裂控储模式[J]. 地学前缘, 2022, 29(6): 239-251.

    WANG Q H, YANG H J, LI Y, et al. Control of strike-slip fault on the large carbonate reservoir in Fuman, Tarim Basin: A reservoir model[J]. Earth Science Frontiers, 2022, 29(6): 239-251. (in Chinese with English abstract
    [55]
    韩剑发, 王彭, 朱光有, 等. 塔里木盆地超深层千吨井油气地质与高效区分布规律[J]. 天然气地球科学, 2023, 34(5): 735-748.

    HAN J F, WANG P, ZHU G Y, et al. Petroleum geology and distribution law of high efficiency areas in ultra-deep kiloton wells in Tarim Basin[J]. Natural Gas Geoscience, 2023, 34(5): 735-748. (in Chinese with English abstract
    [56]
    张钰, 曹自成, 陈红汉, 等. 顺北地区不同走滑断裂带奥陶系油气成藏期次及其贡献度差异性[J]. 地球科学, 2023, 48(6): 2168-2188.

    ZHANG Y, CAO Z C, CHEN H H, et al. Difference of hydrocarbon charging events and their contribution percentages to Ordovician reservoirs among strike-slip fault belts in Shunbei area, Tarim Basin[J]. Earth Science, 2023, 48(6): 2168-2188. (in Chinese with English abstract
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(6) PDF Downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return