Citation: | CAO Zicheng,YUN Lu,PING Hongwei,et al. Geochemistry and origin of Ordovician natural gas in Shunbei area of Tarim Basin[J]. Bulletin of Geological Science and Technology,2025,44(5):38-50 doi: 10.19509/j.cnki.dzkq.tb20240099 |
Petroleum breakthroughs in the strike-slip fault zones of the northeastern Shunbei area in the last decades reveled the spatial variation in petroleum accumulation types and phase patterns, including the oil accumulation on the north, condensate gas accumulation on the south, and dry gas accumulation on the east. Therefore, to further advance ultra-deep petroleum exploration, it is crucial to reveal the genesis mechanism, source, and thermal maturation of the natural gas from the perspective of overall petroleum distribution.
This study systematically collected gas samples from various fault zones in the Shunbei area in order to analyze the geochemical characteristics of natural gas and reveal its generation mechanism or thermal evolution process.
The results indicate that the natural gas in the Shunbei area was minimally affected by TSR even though some parts of the fault zones showed strong modification of thermal-chemical sulfate reduction (TSR). The natural gases in the No. 1 fault zone and in the northern and middle sections of the No. 5 fault zone are primarily crude oil-associated gases generated by primary kerogen cracking. In contrast, the natural gases in the southern section of the No. 5 and No. 4 fault zones were mainly the mixture of early kerogen cracking gas (oil-associated gas) and late crude oil cracking gas. The natural gas in the Shunbei No. 12 fault zone originated from deeper, high-temperature crude oil cracking gas, which occurred at the wet gas stage. The natural gases in the study area predominantly came from the source rocks of the Lower Cambrian Yurtus Formation, and the parent material of these gases is characterized by benthic algae or a mixture of benthic and planktonic algae. Finally, a regression equation for thermal maturity calculation based on the carbon isotope of methane was established for the hydrocarbon generation process in the source rocks of the Yurtus Formation.
The research findings provide important insights into the origin, source, and thermal maturity of ultra-deep gas, offering valuable references for future studies on hydrocarbon generation in the Shunbei area.
[1] |
漆立新. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J]. 中国石油勘探, 2016, 21(3): 38-51. doi: 10.3969/j.issn.1672-7703.2016.03.004
QI L X. Oil and gas breakthrough in ultra-deep Ordovician carbonate formations in Shuntuoguole Uplift, Tarim Basin[J]. China Petroleum Exploration, 2016, 21(3): 38-51. (in Chinese with English abstract doi: 10.3969/j.issn.1672-7703.2016.03.004
|
[2] |
焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质, 2017, 38(5): 831-839. doi: 10.11743/ogg20170501
JIAO F Z. Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin[J]. Oil & Gas Geology, 2017, 38(5): 831-839. (in Chinese with English abstract doi: 10.11743/ogg20170501
|
[3] |
云露. 顺北东部北东向走滑断裂体系控储控藏作用与突破意义[J]. 中国石油勘探, 2021, 26(3): 41-52. doi: 10.3969/j.issn.1672-7703.2021.03.004
YUN L. Controlling effect of NE strike-slip fault system on reservoir development and hydrocarbon accumulation in the eastern Shunbei area and its geological significance, Tarim Basin[J]. China Petroleum Exploration, 2021, 26(3): 41-52. (in Chinese with English abstract doi: 10.3969/j.issn.1672-7703.2021.03.004
|
[4] |
漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(1): 102-111. doi: 10.3969/j.issn.1672-7703.2020.01.010
QI L X. Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei area of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(1): 102-111. (in Chinese with English abstract doi: 10.3969/j.issn.1672-7703.2020.01.010
|
[5] |
马永生, 蔡勋育, 云露, 等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 2022, 49(1): 1-17. doi: 10.11698/PED.2022.01.01
MA Y S, CAI X Y, YUN L, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1): 1-17. (in Chinese with English abstract doi: 10.11698/PED.2022.01.01
|
[6] |
唐大卿, 陈红汉, 耿锋, 等. 板内小位移走滑断裂特征解析: 以塔里木、四川及鄂尔多斯盆地为例[J]. 地球科学, 2023, 48(6): 2067-2086.
TANG D Q, CHEN H H, GENG F, et al. Characteristics of intraplate small-displacement strike-slip faults: A case study of Tarim, Sichuan and Ordos Basins[J]. Earth Science, 2023, 48(6): 2067-2086. (in Chinese with English abstract
|
[7] |
田方磊, 何登发, 陈槚俊, 等. 塔里木盆地顺北5号走滑断裂带北−中段构造特征与多期构造叠加演化时−空序列[J]. 地球科学, 2023, 48(6): 2117-2135.
TIAN F L, HE D F, CHEN J J, et al. Northern and central segments of Shunbei No. 5 strike-slip fault zone in Tarim Basin: Structural characteristics and spatio-temporal evolution process[J]. Earth Science, 2023, 48(6): 2117-2135. (in Chinese with English abstract
|
[8] |
NI Z Y, WANG T G, LI M J, et al. Natural gas characteristics, fluid evolution, and gas charging time of the Ordovician reservoirs in the Shuntuoguole region, Tarim Basin, NW China[J]. Geological Journal, 2018, 53(3): 947-959. doi: 10.1002/gj.2936
|
[9] |
王铁冠, 宋到福, 李美俊, 等. 塔里木盆地顺南−古城地区奥陶系鹰山组天然气气源与深层天然气勘探前景[J]. 石油与天然气地质, 2014, 35(6): 753-762. doi: 10.11743/ogg20140602
WANG T G, SONG D F, LI M J, et al. Natural gas source and deep gas exploration potential of the Ordovician Yingshan Formation in the Shunnan-Gucheng region, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 753-762. (in Chinese with English abstract doi: 10.11743/ogg20140602
|
[10] |
LIU Q Y, JIN Z J, LI H L, et al. Geochemistry characteristics and genetic types of natural gas in central part of the Tarim Basin, NW China[J]. Marine and Petroleum Geology, 2018, 89: 91-105. doi: 10.1016/j.marpetgeo.2017.05.002
|
[11] |
LIU H, YANG Y W, CHENG B, et al. Nature of the Lower-Middle Ordovician reservoir bitumen in the Shunnan area, Tarim Basin, northwestern China[J]. Journal of Petroleum Science and Engineering, 2022, 209: 109966. doi: 10.1016/j.petrol.2021.109966
|
[12] |
ZHOU X X, LYU X X, ZHU G Y, et al. Origin and formation of deep and superdeep strata gas from Gucheng-Shunnan block of the Tarim Basin, NW China[J]. Journal of Petroleum Science and Engineering, 2019, 177: 361-373. doi: 10.1016/j.petrol.2019.02.059
|
[13] |
MA A L, HE Z L, YUN L, et al. The geochemical characteristics and origin of Ordovician ultra-deep natural gas in the North Shuntuoguole area, Tarim Basin, NW China[J]. Journal of Natural Gas Geoscience, 2021, 6(5): 289-300. doi: 10.1016/j.jnggs.2021.09.004
|
[14] |
马安来, 何治亮, 云露, 等. 塔里木盆地顺北地区奥陶系超深层天然气地球化学特征及成因[J]. 天然气地球科学, 2021, 32(7): 1047-1060.
MA A L, HE Z L, YUN L, et al. The geochemical characteristics and origin of Ordovician ultra-deep natural gas in the North Shuntuoguole area, Tarim Basin, NW China[J]. Natural Gas Geoscience, 2021, 32(7): 1047-1060. (in Chinese with English abstract
|
[15] |
云露, 曹自成. 塔里木盆地顺南地区奥陶系油气富集与勘探潜力[J]. 石油与天然气地质, 2014, 35(6): 788-797. doi: 10.11743/ogg20140606
YUN L, CAO Z C. Hydrocarbon enrichment pattern and exploration potential of the Ordovician in Shunnan area, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 788-797. (in Chinese with English abstract doi: 10.11743/ogg20140606
|
[16] |
CHEN Z H, CHAI Z, CHENG B, et al. Geochemistry of high-maturity crude oil and gas from deep reservoirs and their geological significance: A case study on Shuntuoguole low uplift, Tarim Basin, western China[J]. AAPG Bulletin, 2021, 105(1): 65-107. doi: 10.1306/07072019015
|
[17] |
JIA Z J, HOU D J, ZHU X X, et al. Organic geochemistry of Ordovician ultra-deep natural gas in the north Shuntuoguole area, Tarim Basin, NW China: Insights into genetic types, maturity, and sources[J]. Frontiers in Earth Science, 2023, 11: 1083030. doi: 10.3389/feart.2023.1083030
|
[18] |
马安来, 漆立新. 顺北地区四号断裂带奥陶系超深层油气地球化学特征与相态差异性成因[J]. 地学前缘, 2023, 30(6): 247-262.
MA A L, QI L X. Geochemical characteristics and phase behavior of the Ordovician ultra-deep reservoir fluid, No. 4 fault, northern Shuntuoguole, Tarim Basin[J]. Earth Science Frontiers, 2023, 30(6): 247-262. (in Chinese with English abstract
|
[19] |
吴鲜, 李丹, 韩俊, 等. 塔里木盆地顺托果勒北部地区超深层现今地温场特征[J]. 石油学报, 2022, 43(1): 29-40. doi: 10.7623/syxb202201003
WU X, LI D, HAN J, et al. Characteristics of present ultra-deep geothermal field in the northern Shuntuoguole low uplift, Tarim Basin[J]. Acta Petrolei Sinica, 2022, 43(1): 29-40. (in Chinese with English abstract doi: 10.7623/syxb202201003
|
[20] |
SCHOELL M. Genetic characterization of natural gases[J]. AAPG Bulletin, 1983, 67(12): 2225-2238.
|
[21] |
SCHOELL M. Multiple origins of methane in the earth[J]. Chemical Geology, 1988, 71(1/2/3): 1-10.
|
[22] |
SACKETT W M, NAKAPARKSIN S, DALRYMPLE D. Carbon isotope effects in methane production by thermal cracking: Advances in Organic Geochemistry[M]. [S. l.]: Pergamon, 1970: 37-53.
|
[23] |
PRINZHOFER A A, HUC A Y. Genetic and post-genetic molecular and isotopic fractionations in natural gases[J]. Chemical Geology, 1995, 126(3/4): 281-290.
|
[24] |
LORANT F, PRINZHOFER A, BEHAR F, et al. Carbon isotopic and molecular constraints on the formation and the expulsion of thermogenic hydrocarbon gases[J]. Chemical Geology, 1998, 147(3/4): 249-264.
|
[25] |
BERNARD B B, BROOKS J M, SACKETT W M. Natural gas seepage in the gulf of Mexico[J]. Earth and Planetary Science Letters, 1976, 31(1): 48-54. doi: 10.1016/0012-821X(76)90095-9
|
[26] |
CLAYPOOL DUDLEY D RICE GEORGE E. Generation, accumulation, and resource potential of biogenic gas[J]. AAPG Bulletin, 1981, 65(1): 5-25.
|
[27] |
HILL R J, TANG Y C, KAPLAN I R. Insights into oil cracking based on laboratory experiments[J]. Organic Geochemistry, 2003, 34(12): 1651-1672. doi: 10.1016/S0146-6380(03)00173-6
|
[28] |
TIAN H, XIAO X M, WILKINS R W T, et al. Genetic origins of marine gases in the Tazhong area of the Tarim Basin, NW China: Implications from the pyrolysis of marine kerogens and crude oil[J]. International Journal of Coal Geology, 2010, 82(1/2): 17-26.
|
[29] |
樊奇, 樊太亮, 李清平, 等. 塔里木盆地寒武系膏盐岩沉积特征与发育模式[J]. 石油实验地质, 2021, 43(2): 217-226. doi: 10.11781/sysydz202102217
FAN Q, FAN T L, LI Q P, et al. Sedimentary characteristics and development model of Cambrian gypsum-salt rocks, Tarim Basin[J]. Petroleum Geology & Experiment, 2021, 43(2): 217-226. (in Chinese with English abstract doi: 10.11781/sysydz202102217
|
[30] |
徐振平, 陈书平, 罗彩明, 等. 塔里木盆地中寒武统膏盐岩分布及封闭性评价[J]. 中国石油勘探, 2023, 28(5): 54-67. doi: 10.3969/j.issn.1672-7703.2023.05.005
XU Z P, CHEN S P, LUO C M, et al. Distribution and sealing capacity evaluation of gypsum-salt rocks in the Middle Cambrian in Tarim Basin[J]. China Petroleum Exploration, 2023, 28(5): 54-67. (in Chinese with English abstract doi: 10.3969/j.issn.1672-7703.2023.05.005
|
[31] |
CAI C F, HU W S, WORDEN R H. Thermochemical sulphate reduction in Cambro-Ordovician carbonates in central Tarim[J]. Marine and Petroleum Geology, 2001, 18(6): 729-741. doi: 10.1016/S0264-8172(01)00028-9
|
[32] |
LIU Q Y, WORDEN R H, JIN Z J, et al. TSR versus non-TSR processes and their impact on gas geochemistry and carbon stable isotopes in Carboniferous, Permian and Lower Triassic marine carbonate gas reservoirs in the eastern Sichuan Basin, China[J]. Geochimica et Cosmochimica Acta, 2013, 100: 96-115. doi: 10.1016/j.gca.2012.09.039
|
[33] |
JENDEN P D, TITLEY P A, WORDEN R H. Enrichment of nitrogen and 13C of methane in natural gases from the Khuff Formation, Saudi Arabia, caused by thermochemical sulfate reduction[J]. Organic Geochemistry, 2015, 82: 54-68. doi: 10.1016/j.orggeochem.2015.02.008
|
[34] |
贾承造, 张水昌. 中国海相超深层油气形成[J]. 地质学报, 2023, 97(9): 2775-2801.
JIA C Z, ZHANG S C. The formation of marine ultra-deep petroleum in China[J]. Acta Geologica Sinica, 2023, 97(9): 2775-2801. (in Chinese with English abstract
|
[35] |
王清华. 塔里木盆地富满油田凝析气藏成因[J]. 石油勘探与开发, 2023, 50(6): 1128-1139. doi: 10.11698/PED.20230301
WANG Q H. Origin of gas condensate reservoir in Fuman oilfield, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2023, 50(6): 1128-1139. (in Chinese with English abstract doi: 10.11698/PED.20230301
|
[36] |
ROONEY M A, CLAYPOOL G E, CHUNG H M. Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons[J]. Chemical Geology, 1995, 126(3/4): 219-232.
|
[37] |
HAO F, GUO T L, ZHU Y M, et al. Evidence for multiple stages of oil cracking and thermochemical sulfate reduction in the Puguang gas field, Sichuan Basin, China[J]. AAPG Bulletin, 2008, 92(5): 611-637. doi: 10.1306/01210807090
|
[38] |
PING H W, CHEN H H, ZHU J Z, et al. Origin, source, mixing, and thermal maturity of natural gases in the Panyu lower uplift and the Baiyun Depression, Pearl River Mouth Basin, northern South China Sea[J]. AAPG Bulletin, 2018, 102(11): 2171-2200. doi: 10.1306/04121817160
|
[39] |
FABER E. Zur isotopengeochemie gasförmiger Kohlenwasserstoffe[J]. Erdöl, Erdgas, Kohle, 1987, 103(5): 210-218.
|
[40] |
CLAYTON C. Carbon isotope fractionation during natural gas generation from kerogen[J]. Marine and Petroleum Geology, 1991, 8(2): 232-240. doi: 10.1016/0264-8172(91)90010-X
|
[41] |
BERNER U, FABER E. Empirical carbon isotope/maturity relationships for gases from algal kerogens and terrigenous organic matter, based on dry, open-system pyrolysis[J]. Organic Geochemistry, 1996, 24(10/11): 947-955.
|
[42] |
HUANG D F, LIU B Q, WANG T D, et al. Genetic types of natural gases and their maturity discrimination in the east of Tarim Basin[J]. Science China (Earth Sciences), 1996, 39(6): 659-669.
HUANG D F, LIU B Q, WANG T D, et al. Genetic types of natural gases and their maturity discrimination in the east of Tarim Basin[J]. Science China (Earth Sciences), 1996, 39(6): 659-669.
|
[43] |
JENDEN P D, KAPLAN I R. Origin of natural gas in Sacramento Basin, California[J]. AAPG Bulletin, 1989, 73(4): 431-453.
|
[44] |
BERNER U. Entwicklung und anwendung empirischer modelle für die kohlenstoffisotopenvariationen in mischungen thermogener erdgase [D]: TU Clausthal: FRG, 1989.
|
[45] |
CRAMER B, FABER E, GERLING P, et al. Reaction kinetics of stable carbon isotopes in natural GasInsights from dry, open system pyrolysis experiments[J]. Energy & Fuels, 2001, 15(3): 517-532.
|
[46] |
戴金星, 戚厚发. 我国煤成烃气的δ13C-Ro关系[J]. 科学通报, 1989, 34(9): 690-692. doi: 10.1360/csb1989-34-9-690
DAI J X, QI H F. δ13C-Ro relation of coal-derived hydrocarbon gas in China[J]. Chinese Science Bulletin, 1989, 34(9): 690-692. (in Chinese) doi: 10.1360/csb1989-34-9-690
|
[47] |
WAPLES D W, TORNHEIM L. Mathematical models for petroleum-forming processes: Carbon isotope fractionation[J]. Geochimica et Cosmochimica Acta, 1978, 42(5): 467-472. doi: 10.1016/0016-7037(78)90196-5
|
[48] |
JAMES A T. Correlation of reservoired gases using the carbon isotopic compositions of wet gas components (1)[J]. AAPG Bulletin, 1990, 74(9): 1441-1458.
|
[49] |
GUO L G, XIAO X M, TIAN H, et al. Distinguishing gases derived from oil cracking and kerogen maturation: Insights from laboratory pyrolysis experiments[J]. Organic Geochemistry, 2009, 40(10): 1074-1084. doi: 10.1016/j.orggeochem.2009.07.007
|
[50] |
JAMESAT. Correlation of natural gas by use of carbon isotopic distribution between hydrocarbon components[J]. AAPG Bulletin, 1983, 67(7): 1176-1191.
|
[51] |
ANDRESEN B, THRONDSEN T, RÅHEIM A, et al. A comparison of pyrolysis products with models for natural gas generation[J]. Chemical Geology, 1995, 126(3/4): 261-280.
|
[52] |
顾忆, 黄继文, 贾存善, 等. 塔里木盆地海相油气成藏研究进展[J]. 石油实验地质, 2020, 42(1): 1-12. doi: 10.11781/sysydz202001001
GU Y, HUANG J W, JIA C S, et al. Research progress on marine oil and gas accumulation in Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 1-12. (in Chinese with English abstract doi: 10.11781/sysydz202001001
|
[53] |
杨海军, 陈永权, 田军, 等. 塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探, 2020, 25(2): 62-72. doi: 10.3969/j.issn.1672-7703.2020.02.007
YANG H J, CHEN Y Q, TIAN J, et al. Great discovery and its significance of ultra-deep oil and gas exploration in Well Luntan-1 of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(2): 62-72. (in Chinese with English abstract doi: 10.3969/j.issn.1672-7703.2020.02.007
|
[54] |
罗明霞, 曹自成, 徐勤琪, 等. 塔里木盆地塔河油田塔深5井震旦系原油地球化学特征及地质意义[J]. 地质科技通报, 2024, 43(1): 135-149.
LUO M X, CAO Z C, XU Q Q, et al. Geochemical characteristics and geological significance of Sinian crude oil from Well Tashen 5, Tahe oilfield, Tarim Basin[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 135-149. (in Chinese with English abstract
|
[55] |
ZHU G Y, CHEN F R, WANG M, et al. Discovery of the Lower Cambrian high-quality source rocks and deep oil and gas exploration potential in the Tarim Basin, China[J]. AAPG Bulletin, 2018, 102(10): 2123-2151. doi: 10.1306/03141817183
|
[56] |
胡广, 刘文汇, 罗厚勇, 等. 成烃生物组合对烃源岩干酪根碳同位素组成的影响: 以塔里木盆地下古生界烃源岩为例[J]. 矿物岩石地球化学通报, 2019, 38(5): 902-913.
HU G, LIU W H, LUO H Y, et al. The impaction of original organism assemblages in source rocks on the kerogen carbon isotopic compositions: A case study of the Early Paleozoic source rocks in the Tarim Basin, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(5): 902-913. (in Chinese with English abstract
|
[57] |
杨海军, 于双, 张海祖, 等. 塔里木盆地轮探1井下寒武统烃源岩地球化学特征及深层油气勘探意义[J]. 地球化学, 2020, 49(6): 666-682.
YANG H J, YU S, ZHANG H Z, et al. Geochemical characteristics of Lower Cambrian sources rocks from the deepest drilling of Well LT-1 and their significance to deep oil gas exploration of the Lower Paleozoic system in the Tarim Basin[J]. Geochimica, 2020, 49(6): 666-682. (in Chinese with English abstract
|
[58] |
DENG Q, WANG H Z, WEI Z W, et al. Different accumulation mechanisms of organic matter in Cambrian sedimentary successions in the western and northeastern margins of the Tarim Basin, NW China[J]. Journal of Asian Earth Sciences, 2021, 207: 104660. doi: 10.1016/j.jseaes.2020.104660
|
[59] |
陈强路, 储呈林, 杨鑫, 等. 塔里木盆地寒武系沉积模式与烃源岩发育[J]. 石油实验地质, 2015, 37(6): 689-695. doi: 10.11781/sysydz201506689
CHEN Q L, CHU C L, YANG X, et al. Sedimentary model and development of the Cambrian source rocks in the Tarim Basin, NW China[J]. Petroleum Geology & Experiment, 2015, 37(6): 689-695. (in Chinese with English abstract doi: 10.11781/sysydz201506689
|
[60] |
杨海军, 蔡振忠, 李勇, 等. 塔里木盆地富满地区吐木休克组烃源岩有机地球化学特征及其油气勘探意义[J]. 地质科技通报, 2024, 43(3): 81-93.
YANG H J, CAI Z Z, LI Y, et al. Organic geochemical characters of source rock and significance for exploration of the Tumuxiuke Formation in Fuman area, Tarim Basin[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 81-93. (in Chinese with English abstract
|
[61] |
马安来, 李慧莉, 李杰豪, 等. 塔里木盆地柯坪露头剖面中上奥陶统烃源岩地球化学特征与海相油源对比[J]. 天然气地球科学, 2020, 31(1): 47-60.
MA A L, LI H L, LI J H, et al. The geochemical characteristics of Middle-Upper Ordovician source rocks in Keping outcrops profiles and marine oil-source correlation, Tarim Basin, NW China[J]. Natural Gas Geoscience, 2020, 31(1): 47-60. (in Chinese with English abstract
|
[62] |
BERNER U, FABER E. Maturity related mixing model for methane, ethane and propane, based on carbon isotopes[J]. Organic Geochemistry, 1988, 13(1/2/3): 67-72.
|
[63] |
SHEN P, XU Y C. Isotopic compositional characteristics of terrigenous natural gases in China[J]. Chinese Journal of Geochemistry, 1993, 12(1): 14-24. doi: 10.1007/BF02869041
|
[64] |
黄第藩, 赵孟军, 刘宝泉, 等. 塔里木盆地东部天然气的成因类型及其成熟度判识[J]. 中国科学(地球科学), 1996, 26(4): 365-372.
HUANG D F, ZHAO M J, LIU B Q, et al. Genetic types and maturity identification of natural gas in eastern Tarim Basin[J]. Science in China (Earth Sciences), 1996, 26(4): 365-372. (in Chinese)
|
[65] |
RADKE M, LEYTHAEUSER D, TEICHMÜLLER M. Relationship between rank and composition of aromatic hydrocarbons for coals of different origins[J]. Organic Geochemistry, 1984, 15(6): 423-430. doi: 10.1016/0146-6380(84)90065-2
|
[66] |
陈琰, 包建平, 刘昭茜, 等. 甲基菲指数及甲基菲比值与有机质热演化关系: 以柴达木盆地北缘地区为例[J]. 石油勘探与开发, 2010, 37(4): 508-512.
CHEN Y, BAO J P, LIU Z Q, et al. Relationship between methylphenanthrene index, methylphenanthrene ratio and organic thermal evolution: Take the northern margin of Qaidam Basin as an example[J]. Petroleum Exploration and Development, 2010, 37(4): 508-512. (in Chinese with English abstract
|