Turn off MathJax
Article Contents
ZHONG Bo,SONG Ling,LEI Bingbing,et al. Large-scale triaxial test analysis on geocell-reinforced effect of coarse-grained soil under freeze-thaw cycles[J]. Bulletin of Geological Science and Technology,2025,44(6):1-10 doi: 10.19509/j.cnki.dzkq.tb20240096
Citation: ZHONG Bo,SONG Ling,LEI Bingbing,et al. Large-scale triaxial test analysis on geocell-reinforced effect of coarse-grained soil under freeze-thaw cycles[J]. Bulletin of Geological Science and Technology,2025,44(6):1-10 doi: 10.19509/j.cnki.dzkq.tb20240096

Large-scale triaxial test analysis on geocell-reinforced effect of coarse-grained soil under freeze-thaw cycles

doi: 10.19509/j.cnki.dzkq.tb20240096
More Information
  • Author Bio:

    E-mail:Wilbur1998zb@163.com

  • Corresponding author: E-mail:xjsdsl0514@163.com
  • Received Date: 18 Mar 2024
  • Accepted Date: 26 Jun 2024
  • Rev Recd Date: 21 May 2024
  • Available Online: 20 Oct 2025
  • Objective

    Focusing on the application of coarse-grained soil fillings in alpine mountainous regions, this study aims to analyze the reinforcing effect of geocell-reinforced coarse-grained soil under freeze-thaw cycles.

    Methods

    Cyclic freeze-thaw tests and large-scale triaxial unconsolidated-undrained (UU) compression tests were conducted on both geocell-reinforced and unreinforced coarse-grained soil.

    Results

    The results show that the reinforcing effect of the geocell is significant when the axial strain exceeds 2%, compared to unreinforced coarse-grained soil. However, the shear strength, elastic modulus, and cohesion of the geocell-reinforced coarse-grained soil generally decrease as the number of freeze-thaw cycles increases, while the difference of the internal friction angle between the geocell-reinforced and unreinforced coarse-grained soil is small, with a maximum of value 2.08°. Therefore, by introducing the reinforcing effect coefficient, it is proven that the geocell reinforcement effect can be well quantified.

    Conclusion

    It is concluded that the geocell still demonstrates a certain reinforcing effect with an increase within 15 freeze-thaw cycles, although the reinforcement effect of the geocell decreases with the increase in freeze-thaw cycles.

     

  • loading
  • [1]
    国家发展改革委, 交通运输部. 国家发展改革委 交通运输部关于印发《国家公路网规划》的通知 [EB/OL]. (2022-07-04)https://www.gov.cn/zhengce/zhengceku/2022-07/12/content_5700633.htm.

    National Development and Reform Commission, ministry of Transport of the People's Republic of China. Notice of the National Development and Reform Commission and the Ministry of Transport on Printing and Distributing the National Highway Network Plan [EB/OL]. (2022-07-04) https://www.gov.cn/zhengce/zhengceku/2022-07/12/content_5700633.htm. (in Chinese)
    [2]
    晏长根, 顾良军, 杨晓华, 等. 土工格室加筋黄土的三轴剪切性能[J]. 中国公路学报, 2017, 30(10): 17-24.

    YAN C G, GU L J, YANG X H, et al. Triaxial shear property of geocell-reinforced loess[J]. China Journal of Highway and Transport, 2017, 30(10): 17-24. (in Chinese with English abstract
    [3]
    李丽华, 文贝, 胡智, 等. 建筑垃圾填料与土工合成材料加筋剪切性能研究[J]. 武汉大学学报(工学版), 2019, 52(4): 311-316.

    LI L H, WEN B, HU Z, et al. Study on reinforced shear behavior of construction waste filler and geosynthetics[J]. Engineering Journal of Wuhan University, 2019, 52(4): 311-316. (in Chinese with English abstract
    [4]
    MOGHADDAS TAFRESHI S N, DAWSON A R. Comparison of bearing capacity of a strip footing on sand with geocell and with planar forms of geotextile reinforcement[J]. Geotextiles and Geomembranes, 2010, 28(1): 72-84. doi: 10.1016/j.geotexmem.2009.09.003
    [5]
    何忠明, 刘正夫, 向达. 基于路堤粗粒土填料力学特性的改进邓肯−张模型[J]. 中国公路学报, 2023, 36(1): 37-46.

    HE Z M, LIU Z F, XIANG D. Improved Duncan-Zhang model based on mechanical properties of coarse-grained soil filling of embankment[J]. China Journal of Highway and Transport, 2023, 36(1): 37-46. (in Chinese with English abstract
    [6]
    陈生水. 高土石坝变形破坏过程预测理论和防控技术创新[J]. 岩土工程学报, 2022, 44(7): 1211-1219.

    CHEN S S. Innovations in prediction theories and prevention technologies for deformation-induced failure process of high earth and rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1211-1219. (in Chinese with English abstract
    [7]
    杨利, 张树茂, 杨青坡, 等. 土工格室加筋粗粒土加筋效果分析[J]. 水利与建筑工程学报, 2013, 11(6): 125-128.

    YANG L, ZHANG S M, YANG Q P, et al. Analysis on reinforcing effect of geocell-reinforced coarse-grained soil[J]. Journal of Water Resources and Architectural Engineering, 2013, 11(6): 125-128. (in Chinese with English abstract
    [8]
    王志杰, 齐逸飞, 杨广庆, 等. 土工格室加筋碎石复合体大型三轴试验研究[J]. 铁道学报, 2023, 45(9): 161-169.

    WANG Z J, QI Y F, YANG G Q, et al. Experimental investigations of large-scale triaxial tests on geocell reinforced gravel composites[J]. Journal of the China Railway Society, 2023, 45(9): 161-169. (in Chinese with English abstract
    [9]
    齐逸飞. 土工格室加筋碎石复合体静动三轴试验研究[D]. 石家庄: 石家庄铁道大学, 2023.

    QI Y F. Experimental study on static and dynamic triaxial tests of geocell reinforced granular soil[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2023. (in Chinese with English abstract
    [10]
    李丽华, 康浩然, 张鑫, 等. 加筋土石混合体动力特性[J]. 吉林大学学报(工学版), 2024, 54(10): 2897-2907.

    LI L H, KANG H R, ZHANG X, et al. Dynamic characteristics of reinforced soil-rock mixture[J]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54(10): 2897-2907. (in Chinese with English abstract
    [11]
    INDRARATNA B, BIABANI M M, NIMBALKAR S. Behavior of geocell-reinforced subballast subjected to cyclic loading in plane-strain condition[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(1): 04014081. doi: 10.1061/(ASCE)GT.1943-5606.0001199
    [12]
    王世立. 桥头过渡段路基差异沉降土工格室加筋处治方法研究[D]. 武汉: 武汉理工大学, 2020.

    WANG S L. Study on the geocell reinforced treatment method of differential settlement at bridge approach embankment[D]. Wuhan: Wuhan University of Technology, 2020. (in Chinese with English abstract
    [13]
    DASH S K, SHIVADAS A S. Performance improvement of railway ballast using geocells[J]. Indian Geotechnical Journal, 2012, 42(3): 186-193. doi: 10.1007/s40098-012-0017-3
    [14]
    TAVAKOLI MEHRJARDI G, MOTARJEMI F. Interfacial properties of geocell-reinforced granular soils[J]. Geotextiles and Geomembranes, 2018, 46(4): 384-395. doi: 10.1016/j.geotexmem.2018.03.002
    [15]
    赵明华, 陈炳初, 尹平保, 等. 土工格室碎石基层+刚性路面承载特性模型试验研究[J]. 岩土工程学报, 2012, 34(4): 577-581.

    ZHAO M H, CHEN B C, YIN P B, et al. Model tests on bearing capacity characteristics of geocell gravel base and rigid pavement[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 577-581. (in Chinese with English abstract
    [16]
    高昂, 张孟喜, 朱华超, 等. 循环荷载及静载下土工格室加筋路堤模型试验研究[J]. 岩土力学, 2016, 37(7): 1921-1928.

    GAO A, ZHANG M X, ZHU H C, et al. Model tests on geocell-reinforced embankment under cyclic and static loadings[J]. Rock and Soil Mechanics, 2016, 37(7): 1921-1928. (in Chinese with English abstract
    [17]
    侯娟, 张孟喜, 韩晓, 等. 单个高强土工格室作用机理的有限元分析[J]. 岩土工程学报, 2015, 37(增刊1): 26-30.

    HOU J, ZHANG M X, HAN X, et al. Mechanism of a high-strength geocell using FEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 26-30. (in Chinese with English abstract
    [18]
    边学成, 宋广, 陈云敏. Pasternak地基中土工格室加筋体的受力变形分析[J]. 工程力学, 2012, 29(5): 147-155.

    BIAN X C, SONG G, CHEN Y M. Deformation behaviors of geocell reinforcement in Pasternak ground[J]. Engineering Mechanics, 2012, 29(5): 147-155. (in Chinese with English abstract
    [19]
    SONG F, JIN Y T, LIU H B, et al. Analyzing the deformation and failure of geosynthetic-encased granular soil in the triaxial stress condition[J]. Geotextiles and Geomembranes, 2020, 48(6): 886-896.
    [20]
    MENGELT M, EDIL T B, BENSON C H. Resilient modulus and plastic deformation of soil confined in a geocell[J]. Geosynthetics International, 2006, 13(5): 195-205. doi: 10.1680/gein.2006.13.5.195
    [21]
    汪恩良, 徐学燕. 低温条件下塑料土工格栅拉伸特性的试验研究[J]. 岩土力学, 2008, 29(6): 1507-1511.

    WANG E L, XU X Y. Experimental study on tensile characteristics of plastic geogrid under low temperature[J]. Rock and Soil Mechanics, 2008, 29(6): 1507-1511. (in Chinese with English abstract
    [22]
    陈榕, 王喜强, 郝冬雪, 等. 季节性冻土中土工格栅加筋特性试验研究[J]. 岩土工程学报, 2019, 41(6): 1101-1107.

    CHEN R, WANG X Q, HAO D X, et al. Experimental investigation on reinforced characteristics of geogrids in seasonal frozen soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1101-1107. (in Chinese with English abstract
    [23]
    魏静, 许兆义, 包黎明, 等. 青藏铁路多年冻土区土工格室护坡试验研究[J]. 岩石力学与工程学报, 2006, 25(增刊1): 3168-3173.

    WEI J, XU Z Y, BAO L M, et al. Experimental study on embankment slope protection with geocell in permafrost regions of Qinghai-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1): 3168-3173. (in Chinese with English abstract
    [24]
    中华人民共和国交通运输部. 公路土工试验规程: JTG3430-2020[S]. 北京: 人民交通出版社, 2020.

    Ministry of Transport of the People's Republic of China. Test methods of soils for highway engineering: JTG3430-2020[S]. Beijing: China Communications Press, 2020. (in Chinese)
    [25]
    中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123-2019[S]. 北京: 中国计划出版社, 2019.

    Ministry of Housing and Urban-rural Development of the People's Republic of China. Standard for geotechnical testing method: GB/T 50123-2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [26]
    邴慧, 何平. 冻融循环对含盐土物理力学性质影响的试验研究[J]. 岩土工程学报, 2009, 31(12): 1958-1962.

    BING H, HE P. Influence of freeze-thaw cycles on physical and mechanical properties of salty soil[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1958-1962. (in Chinese with English abstract
    [27]
    张莎莎, 杨晓华. 粗粒盐渍土大型冻融循环剪切试验[J]. 长安大学学报(自然科学版), 2012, 32(3): 11-16.

    ZHANG S S, YANG X H. Large shear test on coarse saline soil with freeze-thaw cycle[J]. Journal of Chang'an University (Natural Science Edition), 2012, 32(3): 11-16. (in Chinese with English abstract
    [28]
    侯鑫, 马巍, 李国玉, 等. 冻融循环对硅酸钠固化黄土力学性质的影响[J]. 冰川冻土, 2018, 40(1): 86-93.

    HOU X, MA W, LI G Y, et al. Effects of freezing-thawing cycles on mechanical properties of loess solidified by sodium silicate[J]. Journal of Glaciology and Geocryology, 2018, 40(1): 86-93. (in Chinese with English abstract
    [29]
    卜建清, 王天亮. 冻融及细粒含量对粗粒土力学性质影响的试验研究[J]. 岩土工程学报, 2015, 37(4): 608-614.

    BU J Q, WANG T L. Influences of freeze-thaw and fines content on mechanical properties of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 608-614. (in Chinese with English abstract
    [30]
    穆彦虎, 陈涛, 陈国良, 等. 冻融循环对黏质粗粒土抗剪强度影响的试验研究[J]. 防灾减灾工程学报, 2019, 39(3): 375-386.

    MU Y H, CHEN T, CHEN G L, et al. Experimental study on effect of cyclic freeze-thaw on shear behaviors of clayey coarse-grained soil[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(3): 375-386. (in Chinese with English abstract
    [31]
    孟亚, 徐超, 贾斌, 等. 含水率和冻融循环对筋土界面剪切特性的影响[J]. 中南大学学报(自然科学版), 2024, 55(2): 586-594.

    MENG Y, XU C, JIA B, et al. Influence of water contents and freeze-thaw cycles on shear behavior of geogrid-soil interface[J]. Journal of Central South University (Science and Technology), 2024, 55(2): 586-594. (in Chinese with English abstract
    [32]
    徐望国, 张家生, 贺建清. 加筋软岩粗粒土路堤填料大型三轴试验研究[J]. 岩石力学与工程学报, 2010, 29(3): 535-541.

    XU W G, ZHANG J S, HE J Q. Research on large-scale triaxial tests on reinforced soft rock composed of coarse-grained soil as embankment fillings[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 535-541. (in Chinese with English abstract
    [33]
    宋飞, 石磊, 樊明尊. 土工格室加筋正常固结粉质黏土应力应变响应[J]. 地质科技通报, 2024, 43(1): 184-193.

    SONG F, SHI L, FAN M Z. Stress-strain response of geocell-reinforced normally consolidated silty clay[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 184-193. (in Chinese with English abstract
    [34]
    LEE W, BOHRA N C, ALTSCHAEFFL A G, et al. Resilient modulus of cohesive soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(2): 131-136. doi: 10.1061/(ASCE)1090-0241(1997)123:2(131)
    [35]
    蔡正银, 朱洵, 张晨, 等. 高寒区膨胀土渠道边坡性能演变规律[J]. 中南大学学报(自然科学版), 2022, 53(1): 21-50.

    CAI Z Y, ZHU X, ZHANG C, et al. Performance evolution of expansive soil canal slope in high cold region[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 21-50. (in Chinese with English abstract
    [36]
    朱洵, 蔡正银, 黄英豪, 等. 湿干冻融耦合循环作用下膨胀土力学特性及损伤演化规律研究[J]. 岩石力学与工程学报, 2019, 38(6): 1233-1241.

    ZHU X, CAI Z Y, HUANG Y H, et al. Research on mechanical properties and damage evolution law of expensive soils under the cyclic action of coupling wetting-drying and freeze-thaw[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1233-1241. (in Chinese with English abstract
    [37]
    阮波, 张向京, 彭意. Excel规划求解三轴试验抗剪强度指标[J]. 铁道科学与工程学报, 2009, 6(5): 57-60.

    RUAN B, ZHANG X J, PENG Y. Programming solver tools of Excel evaluate shear strength parameters from results of triaxial tests[J]. Journal of Railway Science and Engineering, 2009, 6(5): 57-60. (in Chinese with English abstract
    [38]
    BATHURST R J, KARPURAPU R. Large-scale triaxial compression testing of geocell-reinforced granular soils[J]. Geotechnical Testing Journal, 1993, 16(3): 296-303. doi: 10.1520/GTJ10050J
    [39]
    宋飞, 刘杰. 土工格室加筋土等效强度与等效刚度计算方法[M]. 北京: 中国水利水电出版社, 2020.

    SONG F, LIU J. Calculation method of equivalent strength and equivalent stiffness of geocell reinforced soil[M]. Beijing: China Water & Power Press, 2020. (in Chinese)
    [40]
    RAJAGOPAL K, KRISHNASWAMY N R, MADHAVI LATHA G. Behaviour of sand confined with single and multiple geocells[J]. Geotextiles and Geomembranes, 1999, 17(3): 171-184. doi: 10.1016/S0266-1144(98)00034-X
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(42) PDF Downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return