| Citation: | WANG Qin,GONG Huili,TIAN Yu,et al. Evolution characteristics of layered subsidence in Hengshui City and its response mechanism to environmental factors[J]. Bulletin of Geological Science and Technology,2025,44(6):1-12 doi: 10.19509/j.cnki.dzkq.tb20240022 |
Affected by climate change and human activities, groundwater resources in the Hengshui area have been over exploited year-round, which directly leads to severe ground subsidence, becoming one of the main geological disasters in this region.
Based on the accumulated settlement data of the main urban area of Hengshui City from January 2009 to December 2022, obtained from layered mark monitoring, this study investigates the ground subsidence mechanism of three compression layers (F1, F2, F3 layers from shallow to deep). First, the Gompertz model was used to fit the cumulative settlement of each compression layer. The first-order derivative of the fitting results was then calculated to determine the settlement rate of each layer. With 0.5 mm/month as the threshold, settlement initiation, rapid settlement rate growth, gradual settlement rate decline, and settlement stabilization of each layer are identified. The zero growth (ZG) model is then employed to divide the settlement of each layer into irreversible settlement sequence (GRC) and reversible rebound sequence (SWD), and the fluctuation characteristics of settlement and rebound periods are analyzed. Finally, the linear mixed model (LMM) is applied to analyze the contribution of environmental factors such as precipitation, evapotranspiration, shallow groundwater level, and deep groundwater level to the compression settlement (GRC_rate) during each layer's settlement period.
The results show that: ①The cumulative settlement fitting curves of each layers exhibit an "S" shape, and the settlement rate curves show a single-peak pattern, with a "slow-fast-slow" trend. The main settlement period start time, end time, cumulative settlement, and settlement rate of each layer differ; ② In terms of cumulative settlement and monthly settlement increment amplitude, F3 layer > F2 layer > F1 layer. In terms of rebound amplitude, F1 layer > F2 and F3 layers; ③ Evapotranspiration and shallow groundwater level contribute the most to the compression settlement of F1 and F2 layers, while shallow groundwater level and deep groundwater level are the primary contributors to the compression settlement of F3 layer.
The research results provide a reference for the prevention and control of land subsidence.
| [1] |
ZHU L, GONG H L, LI X J, et al. Land subsidence due to groundwater withdrawal in the northern Beijing Plain, China[J]. Engineering Geology, 2015, 193: 243-255. doi: 10.1016/j.enggeo.2015.04.020
|
| [2] |
许军强, 马涛, 卢意恺, 等. 基于SBAS-InSAR技术的豫北平原地面沉降监测[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1182-1191.
XU J Q, MA T, LU Y K, et al. Land subsidence monitoring in North Henan Plain based on SBAS-InSAR technology[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(4): 1182-1191. (in Chinese with English abstract
|
| [3] |
杜东, 刘宏伟, 周佳慧, 等. 北京市通州区地面沉降特征与影响因素研究[J]. 地质学报, 2022, 96(2): 712-725.
DU D, LIU H W, ZHOU J H, et al. Study of the characteristics and influencing factors of land subsidence in the Tongzhou District of Beijing[J]. Acta Geologica Sinica, 2022, 96(2): 712-725. (in Chinese with English abstract
|
| [4] |
赵明华, 刘煜, 曹文贵. 软土路基沉降发展规律及其预测[J]. 中南大学学报(自然科学版), 2004, 35(1): 157-161.
ZHAO M H, LIU Y, CAO W G. The developing regularity and forecasting of settlement in soft clay roadbed[J]. Journal of Central South University of Technology (Natural Science), 2004, 35(1): 157-161. (in Chinese with English abstract
|
| [5] |
余闯, 刘松玉. 路堤沉降预测的Gompertz模型应用研究[J]. 岩土力学, 2005, 26(1): 82-86.
YU C, LIU S Y. A Study on prediction of embankment settlement with the Gompertz model[J]. Rock and Soil Mechanics, 2005, 26(1): 82-86. (in Chinese with English abstract
|
| [6] |
李洋, 雷胜友, 李梦莎, 等. 高铁路基下长短桩处理的湿陷性黄土地基沉降分析[J]. 中国科技论文, 2015, 10(7): 794-797.
LI Y, LEI S Y, LI M S, et al. Settlement analysis for long-short-pile composite foundation in collapsible loess area under high-speed railway subgrade[J]. China Sciencepaper, 2015, 10(7): 794-797. (in Chinese with English abstract
|
| [7] |
刘光秀, 曹海莹, 李玉根. 灰色-Gompertz组合模型在软土路基沉降预测中的应用[J]. 中国科技论文, 2016, 11(13): 1488-1491.
LIU G X, CAO H Y, LI Y G. Application of grey and Gompertz combination model in settlement prediction of soft soil subgrade[J]. China Sciencepaper, 2016, 11(13): 1488-1491. (in Chinese with English abstract
|
| [8] |
黄鑫, 张继文, 于永堂, 等. 基于北斗卫星导航系统的地下车库深基坑沉降监测与分析[J]. 测绘通报, 2023(9): 18-24.
HUANG X, ZHANG J W, YU Y T, et al. Monitoring and analysis of deep foundation pit settlement of underground garage based on Beidou Navigation Satellite System[J]. Bulletin of Surveying and Mapping, 2023(9): 18-24. (in Chinese with English abstract
|
| [9] |
段士超. 冀西北黄土高填方路基沉降变形规律及预测研究[D]. 河北保定: 河北大学, 2021.
DUAN S C. Study on settlement and deformation law and prediction of loess high-filled roadbed in Northwest Hebei[D]. Baoding Hebei: Hebei University, 2021. (in Chinese with English abstract
|
| [10] |
王博林, 马文杰, 王旭, 等. 最优组合预测模型在高填方体沉降中的应用研究[J]. 土木工程学报, 2019, 52(增刊1): 36-43.
WANG B L, MA W J, WANG X, et al. Research on application of optimal combination prediction model in settlement of high fill body[J]. China Civil Engineering Journal, 2019, 52(S1): 36-43.
|
| [11] |
张航. 怀芷高速高填方路基K21+620断面沉降规律及预测研究[D]. 长沙: 长沙理工大学, 2019.
ZHANG H. Study on subsidence regularity and prediction of K21+620 section of high fill subgrade in Huaizhi Expressway[D]. Changsha: Changsha University of Science & Technology, 2019. (in Chinese with English abstract
|
| [12] |
ZWEIFEL R, HAENI M, BUCHMANN N, et al. Are trees able to grow in periods of stem shrinkage?[J]. New Phytologist, 2016, 211(3): 839-849. doi: 10.1111/nph.13995
|
| [13] |
薛峰, 江源, 董满宇, 等. 不同去趋势方法对基于Dendrometer数据的茎干水分动态分析的影响: 以白扦为例[J]. 植物生态学报, 2021, 45(8): 880-890. doi: 10.17521/cjpe.2021.0025
XUE F, JIANG Y, DONG M Y, et al. Influence of different de-trending methods on stem water relations of Picea meyeri derived from Dendrometer measurements[J]. Chinese Journal of Plant Ecology, 2021, 45(8): 880-890. (in Chinese with English abstract doi: 10.17521/cjpe.2021.0025
|
| [14] |
PLAVCOVÁ L, TUMAJER J, ALTMAN J, et al. High inter-specific diversity and seasonality of trunk radial growth in trees along an afrotropical elevational gradient[J]. Plant, Cell & Environment, 2025, 48(3): 2285-2297.
|
| [15] |
XUE F, JIANG Y, DONG M Y, et al. Different drought responses of stem water relations and radial increments in Larix principis-rupprechtii and Picea meyeri in a montane mixed forest[J]. Agricultural and Forest Meteorology, 2022, 315: 108817. doi: 10.1016/j.agrformet.2022.108817
|
| [16] |
SMITH J, BROWM L , WANG X, et al. Application of zero growth model in soil moisture variation analysis[J]. Journal of Soil Science, 2018, 45(3): 234-245.
|
| [17] |
JONES M, DAVIS R, CHEN Y. Separating soil processes using growth models: A new approach[J]. Environmental Geotechnics, 2020, 7(2): 112-124.
|
| [18] |
河北省地矿局第三水文工程地质大队地质环境监测站. 河北省衡水市地质环境监测报告(2006−2010年)[R]. 河北衡水: 河北省地矿局第三水文工程地质大队地质环境监测站, 2011.
Geological Environment Monitoring Station of the Third Hydrologic Engineering Geology Group of Hebei Province Bureau of Geology and Mineral Resources. Geological environment monitoring report of Hengshui City, Hebei Province (2006−2010)[R]. Hengshui Hebei: Geological Environment Monitoring Station of the Third Hydrologic Engineering Geology Group of Hebei Province Bureau of Geology and Mineral Resources, 2011. (in Chinese)
|
| [19] |
邓兴. 河北省衡水市地下水水位动态特征及变化趋势分析[D]. 石家庄: 河北地质大学, 2019.
DENG X. Dynamic characteristics and trends of groundwater level in Hengshui City, Hebei Province[D]. Shijiazhuang: Hebei GEO University, 2019. (in Chinese with English abstract
|
| [20] |
纪洪磊, 杨亚宾, 张永伟, 等. 鲁北平原第四纪沉积特征及地面沉降模式分析[J]. 地质学报, 2019, 93(增刊1): 241-250.
JI H L, YANG Y B, ZHANG Y W, et al. Analysis of quaternary sedimentary characteristics and land subsidence model in Lubei Plain[J]. Acta Geologica Sinica, 2019, 93(S1): 241-250. (in Chinese with English abstract
|
| [21] |
河北省地质局. 河北省水文地质图集[M]. 北京: 地质出版社, 1981.
Hebei Bureau of Geology. Hydrogeological atlas of Hebei Province[M]. Beijing: Geological Publishing House, 1981. (in Chinese)
|
| [22] |
张兆吉, 费宇红, 陈宗宇, 等. 华北平原地下水可持续利用调查评价[M]. 北京: 地质出版社, 2009.
ZHANG Z J, FEI Y H, CHEN Z Y, et al. Investigation and evaluation on sustainable utilization of groundwater in the North China Plain[M]. Beijing: Geological Publishing House, 2009. (in Chinese)
|
| [23] |
申晓旭. 华北平原冬小麦-夏玉米轮作系统的水足迹评价[D]. 济南: 山东大学, 2020.
SHEN X X. Water footprint analysis of winter wheat-summer maize rotation system in North China Plain[D]. Jinan: Shandong University, 2020. (in Chinese with English abstract
|
| [24] |
成建梅, 柳璨, 李敏敏, 等. 城市化进程下北京平原渗流场与地面沉降发展演化模拟[J]. 地质科技通报, 2020, 39(1): 43-52.
CHENG J M, LIU C, LI M M, et al. Numerical study on evolution of groundwater hydrodynamics and land subsidence under the process of metropolitan urbanization in Beijing Plain, China[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 43-52. (in Chinese with English abstract
|
| [25] |
郭海朋, 白晋斌, 张有全, 等. 华北平原典型地段地面沉降演化特征与机理研究[J]. 中国地质, 2017, 44(6): 1115-1127.
GUO H P, BAI J B, ZHANG Y Q, et al. The evolution characteristics and mechanism of the land subsidence in typical areas of the North China Plain[J]. Geology in China, 2017, 44(6): 1115-1127. (in Chinese with English abstract
|
| [26] |
TERZAGHI K. Principles of soil mechanics: I-Phenomena of cohesion of clays[J]. Engineering News-Record, 1925, 95(19): 742-746.
|
| [27] |
GAO M L, GONG H L, CHEN B B, et al. Regional land subsidence analysis in eastern Beijing Plain by InSAR time series and wavelet transforms[J]. Remote Sensing, 2018, 10(3): 365. doi: 10.3390/rs10030365
|
| [28] |
中国地质环境监测院. 中国地质环境监测地下水位年鉴(2009−2021)[M]. 北京: 中国大地出版社, 2022.
China Geological Environment Monitoring Institute. China groundwater level yearbook for geo-environmental monitoring (2009−2021)[M]. Beijing: China Land Press, 2022. (in Chinese)
|
| [29] |
国家统计局. 国际统计年鉴-2019[M]. 北京: 中国统计出版社, 2020.
National Bureau of Statistics. International statistical yearbook-2019[M]. Beijing: China Statistics Press, 2020. (in Chinese)
|
| [30] |
SMITH J, BROWM L, WANG X. Threshold determination in ground subsidence analysis: A comprehensive study[J]. Journal of Geotechnical Engineering, 2017, 53(4): 567-578.
|
| [31] |
Bureau International des Poids et Mesures. Guide to the expression of uncertainty in measurement (GUM): ISO/IEC Guide 98-3: 2008[S]. Geneva, Switzerland: International Organization for Standardization (ISO), 2008.
|
| [32] |
王子逍. 云冷杉林主要树种径向生长动态及其对气候变化的响应[D]. 北京: 北京林业大学, 2023.
WANG Z X. Radial growth dynamics of major species in spruce-fir forests and their response to climate change[D]. Beijing: Beijing Forestry University, 2023. (in Chinese with English abstract
|
| [33] |
彭代亮, 黄敬峰, 王秀珍. 基于MODIS-EVI区域植被季节变化与气象因子的关系[J]. 应用生态学报, 2007, 18(5): 985-991.
PENG D L, HUANG J F, WANG X Z. Correlation analysis of regional vegetation seasonal fluctuation and climate factors based on MODIS-EVI[J]. Chinese Journal of Applied Ecology, 2007, 18(5): 985-991. (in Chinese with English abstract
|
| [34] |
JUKIĆ D, DENIĆ-JUKIĆ V. Investigating relationships between rainfall and karst-spring discharge by higher-order partial correlation functions[J]. Journal of Hydrology, 2015, 530: 24-36. doi: 10.1016/j.jhydrol.2015.09.045
|
| [35] |
陈彦光, 刘继生. 基于引力模型的城市空间互相关和功率谱分析: 引力模型的理论证明、函数推广及应用实例[J]. 地理研究, 2002, 21(6): 742-752.
CHEN Y G, LIU J S. Derivation and generalization of the urban gravitational model using fractal idea with an application to the spatial cross-correlation between Beijing and Tianjin[J]. Geographical Research, 2002, 21(6): 742-752. (in Chinese with English abstract
|
| [36] |
张学霞, 葛全胜, 郑景云. 近50年北京植被对全球变暖的响应及其时效: 基于遥感数据和物候资料的分析[J]. 生态学杂志, 2005, 24(2): 123-130.
ZHANG X X, GE Q S, ZHENG J Y. Impacts and lags of global warming on vegetation in Beijing for the last 50 years based on remotely sensed data and phonological information[J]. Chinese Journal of Ecology, 2005, 24(2): 123-130. (in Chinese with English abstract
|
| [37] |
BOLKER B M, BROOKS M E, CLARK C J, et al. Generalized linear mixed models: A practical guide for ecology and evolution[J]. Trends in Ecology & Evolution, 2009, 24(3): 127-135.
|
| [38] |
牛豪阁, 张芬, 于爱灵, 等. 祁连山东部青杄年内径向生长动态对气候的响应[J]. 生态学报, 2018, 38(20): 7412-7420.
NIU H G, ZHANG F, YU A L, et al. Intra-annual stem radial growth dynamics of Picea wilsorii in response to climate in the eastern Qilian Mountains[J]. Acta Ecologica Sinica, 2018, 38(20): 7412-7420. (in Chinese with English abstract
|
| [39] |
张仪萍, 张土乔, 龚晓南. 沉降的灰色预测[J]. 工业建筑, 1999, 29(4): 45-48.
ZHANG Y P, ZHANG T Q, GONG X N. Grey prediction of settlement[J]. Industrial Construction, 1999, 29(4): 45-48. (in Chinese with English abstract
|
| [40] |
黄春霞, 王照宇. 土力学[M]. 南京: 东南大学出版社, 2012.
HUANG C X, WANG Z Y. Soil mechanics[M]. Nanjing: Southeast University Presss, 2012. (in Chinese)
|
| [41] |
董利虎, 李凤日, 贾炜玮. 基于线性混合效应的红松人工林枝条生物量模型[J]. 应用生态学报, 2013, 24(12): 3391-3398.
DONG L H, LI F R, JIA W W. Linear mixed modeling of branch biomass for Korean pine plantation[J]. Chinese Journal of Applied Ecology, 2013, 24(12): 3391-3398. (in Chinese with English abstract
|
| [42] |
张胄, 于娟, 吴利杰, 等. 3.34 Ma以来河北平原衡水地区沉积物粒度特征及沉积环境意义[J]. 干旱区资源与环境, 2021, 35(3): 103-108.
ZHANG Z, YU J, WU L J, et al. Sediment grain size characteristics and sedimentary environment significance in Hengshui area, Hebei Plain since 3.34 Ma[J]. Journal of Arid Land Resources and Environment, 2021, 35(3): 103-108. (in Chinese with English abstract
|
| [43] |
刘贺, 罗勇, 雷坤超, 等. 北京新航城地区地面沉降演化规律及多源监测方法对比研究[J]. 地质科技通报, 2023, 42(1): 398-406.
LIU H, LUO Y, LEI K C, et al. Evolution of land subsidence and comparative study on multi-source monitoring methods in New Airlines City of Beijing[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 398-406. (in Chinese with English abstract
|