Turn off MathJax
Article Contents
ZANG Xin,BIAN Huiyuan,ZHANG Yonghao,et al. Mesoscopic failure evolution of mud shale based on CT-PFC coupling method[J]. Bulletin of Geological Science and Technology,2025,44(6):1-11 doi: 10.19509/j.cnki.dzkq.tb20230724
Citation: ZANG Xin,BIAN Huiyuan,ZHANG Yonghao,et al. Mesoscopic failure evolution of mud shale based on CT-PFC coupling method[J]. Bulletin of Geological Science and Technology,2025,44(6):1-11 doi: 10.19509/j.cnki.dzkq.tb20230724

Mesoscopic failure evolution of mud shale based on CT-PFC coupling method

doi: 10.19509/j.cnki.dzkq.tb20230724
More Information
  • Author Bio:

    E-mail:1213418495@qq.com

  • Corresponding author: E-mail:bianhuiyuan@xust.edu.cn
  • Received Date: 02 Jan 2024
  • Accepted Date: 01 Mar 2024
  • Rev Recd Date: 28 Feb 2024
  • Available Online: 17 Oct 2025
  • Objective

    To investigate the failure mechanism of rocks at the mesoscopic scale,

    Methods

    This study proposes a novel modeling method that combines digital image processing (DIP) technology and particle flow code (PFC) to characterize mineral properties. The discrete element numerical model was calibrated using macroscopic mechanical parameters and failure modes obtained from conventional triaxial compression tests. Under geostress conditions, the influence of rock mineral properties on rock failure evolution and the effect of heterogeneous structures on microcracking behavior were analyzed.

    Result

    The results show that the loading process of conventional triaxial compression tests can be divided into four stages: Crack closing stage, elastic deformation stage, crack growth stage, and crack explosion stage. Simulations based on computed tomography (CT) slices of three shale samples indicate that rock heterogeneity has a certain impact on the generation of rock microcracks and rock physical-mechanical parameters—weaker heterogeneity corresponds to higher peak strength (σmax) and elastic modulus (E). In terms of crack propagation distribution, increased heterogeneity leads to a more complex microcrack distribution. From the perspective of the spatial distribution of rock microcracks, microcracks tend to occur preferentially at the interfaces between dolomite and quartz minerals.

    Conclusion

    The research findings provide important reference significance for deep underground oil and gas exploitation and disaster prevention engineering.

     

  • loading
  • [1]
    JOSH M, ESTEBAN L, DELLE PIANE C, et al. Laboratory characterisation of shale properties[J]. Journal of Petroleum Science and Engineering, 2012, 88/89: 107-124.
    [2]
    WONG T F. Micromechanics of faulting in westerly granite[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1982, 19(2): 49-64.
    [3]
    ZHAO Y X, LIU S M, ZHAO G F, et al. Failure mechanisms in coal: Dependence on strain rate and microstructure[J]. Journal of Geophysical Research(Solid Earth), 2014, 119(9): 6924-6935. doi: 10.1002/2014JB011198
    [4]
    JIANG T, SHAO J F, XU W Y, et al. Experimental investigation and micromechanical analysis of damage and permeability variation in brittle rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(5): 703-713. doi: 10.1016/j.ijrmms.2010.05.003
    [5]
    ZHU Z N, TIAN H, CHEN J, et al. Experimental investigation of thermal cycling effect on physical and mechanical properties of heated granite after water cooling[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(5): 2457-2465. doi: 10.1007/s10064-019-01705-w
    [6]
    LI Y B, ZHAI Y, WANG C S, et al. Mechanical properties of Beishan granite under complex dynamic loads after thermal treatment[J]. Engineering Geology, 2020, 267: 105481. doi: 10.1016/j.enggeo.2020.105481
    [7]
    ERARSLAN N. Microstructural investigation of subcritical crack propagation and fracture process zone (FPZ) by the reduction of rock fracture toughness under cyclic loading[J]. Engineering Geology, 2016, 208: 181-190. doi: 10.1016/j.enggeo.2016.04.035
    [8]
    LIU X L, WANG F, NAWNIT K, et al. Experimental study on debris flow initiation[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(3): 1565-1580. doi: 10.1007/s10064-019-01618-8
    [9]
    郎颖娴, 梁正召, 段东, 等. 基于CT试验的岩石细观孔隙模型重构与并行模拟[J]. 岩土力学, 2019, 40(3): 1204-1212.

    LANG Y X, LIANG Z Z, DUAN D, et al. Three-dimensional parallel numerical simulation of porous rocks based on CT technology and digital image processing[J]. Rock and Soil Mechanics, 2019, 40(3): 1204-1212. (in Chinese with English abstract
    [10]
    LIU C, LIU X L, WU C L, et al. Investigation of multiscale failure mechanism of red bed soft rock using grain-based finite-discrete element method combined with X-ray micro-computerized tomography[J]. KSCE Journal of Civil Engineering, 2023, 27(3): 1350-1367. doi: 10.1007/s12205-023-1445-6
    [11]
    ZHOU L, ZHU Z M, WANG M, et al. Dynamic propagation behavior of cracks emanating from tunnel edges under impact loads[J]. Soil Dynamics and Earthquake Engineering, 2018, 105: 119-126. doi: 10.1016/j.soildyn.2017.12.012
    [12]
    HU L H, SU G S, LIANG X, et al. A distinct element based two-stage-structural model for investigation of the development process and failure mechanism of strainburst[J]. Computers and Geotechnics, 2020, 118: 103333. doi: 10.1016/j.compgeo.2019.103333
    [13]
    LI X B, ZOU Y, ZHOU Z L. Numerical simulation of the rock SHPB test with a special shape striker based on the discrete element method[J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1693-1709. doi: 10.1007/s00603-013-0484-6
    [14]
    DU H B, DAI F, XU Y, et al. Numerical investigation on the dynamic strength and failure behavior of rocks under hydrostatic confinement in SHPB testing[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 108: 43-57. doi: 10.1016/j.ijrmms.2018.05.008
    [15]
    JU M H, XING H Z. Crack propagation in jointed rock and its effect on rock macrofracture resistance: Insights from discrete element analysis[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 8(1): 21.
    [16]
    闫欣宜, 胡新丽, 付茹. 橡胶纤维−砂混合料力学特性的离散元三轴试验研究[J]. 地质科技通报, 2020, 39(2): 168-174.

    YAN X Y, HU X L, FU R. Triaxial shear test of mechanical characteristics on rubber fiber-sand mixtures based on particle flow code simulation[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 168-174. (in Chinese with English abstract
    [17]
    CHUNG J, LEE H, KWON S. Numerical investigation of radial strain-controlled uniaxial compression test of Äspö diorite in grain-based model[J]. Rock Mechanics and Rock Engineering, 2019, 52(10): 3659-3674. doi: 10.1007/s00603-019-01838-0
    [18]
    GHAZVINIAN E, DIEDERICHS M S, QUEY R. 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(6): 506-521. doi: 10.1016/j.jrmge.2014.09.001
    [19]
    HOFMANN H, BABADAGLI T, ZIMMERMANN G. A grain based modeling study of fracture branching during compression tests in granites[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 77: 152-162. doi: 10.1016/j.ijrmms.2015.04.008
    [20]
    PENG J, WONG L N Y, TEH C I, et al. Modeling micro-cracking behavior of bukit timah granite using grain-based model[J]. Rock Mechanics and Rock Engineering, 2018, 51(1): 135-154. doi: 10.1007/s00603-017-1316-x
    [21]
    张帆, 郭翰群, 赵建建, 等. 花岗岩微观力学性质试验研究[J]. 岩石力学与工程学报, 2017, 36(增刊2): 3864-3872.

    ZHANG F, GUO H Q, ZHAO J J, et al. Experimental study on micro-mechanical properties of granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2): 3864-3872.
    [22]
    ZHAO Z H, LIU Z N, PU H, et al. Effect of thermal treatment on Brazilian tensile strength of granites with different grain size distributions[J]. Rock Mechanics and Rock Engineering, 2018, 51(4): 1293-1303. doi: 10.1007/s00603-018-1404-6
    [23]
    SUN H K, GAO Y, ZHENG X Y, et al. Meso-scale simulation of concrete uniaxial behavior based on numerical modeling of CT images[J]. Materials, 2019, 12(20): 3403. doi: 10.3390/ma12203403
    [24]
    HU X J, XIE N, ZHU Q Z, et al. Modeling damage evolution in heterogeneous granite using digital image-based grain-based model[J]. Rock Mechanics and Rock Engineering, 2020, 53(11): 4925-4945. doi: 10.1007/s00603-020-02191-3
    [25]
    解经宇, 陆洪智, 陈磊, 等. 龙马溪组层状页岩微观非均质性及力学各向异性特征[J]. 地质科技通报, 2021, 40(3): 67-77.

    XIE J Y, LU H Z, CHEN L, et al. Micro scopic heterogeneity and mechanical anisotropy of the laminated shale in Longmaxi Formation[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 67-77. (in Chinese with English abstract
    [26]
    黄界海, 李小龙, 胡国庆, 等. 杨家岭页岩微宏观下物理力学特征研究[J]. 中国矿山工程, 2023, 52(6): 6-11.

    HUANG J H, LI X L, HU G Q, et al. Study on the micro macro physical and mechanical of properties of Yangjialing shale[J]. China Mine Engineering, 2023, 52(6): 6-11. (in Chinese with English abstract
    [27]
    胡训健, 卞康, 刘建, 等. 细观结构的非均质性对花岗岩蠕变特性影响的离散元模拟研究[J]. 岩石力学与工程学报, 2019, 38(10): 2069-2083.

    HU X J, BIAN K, LIU J, et al. Discrete element simulation study on the influence of microstructure heterogeneity on the creep characteristics of granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 2069-2083. (in Chinese with English abstract
    [28]
    李博, 梁秦源, 周宇, 等. 基于CT-GBM重构法的花岗岩裂纹扩展规律研究[J]. 岩石力学与工程学报, 2022, 41(6): 1114-1125.

    LI B, LIANG Q Y, ZHOU Y, et al. Research on crack propagation law of granite based on CT-GBM reconstruction method[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(6): 1114-1125. (in Chinese with English abstract
    [29]
    DING H F, FU X D, SHENG Q, et al. Study on macroscopic mechanical behavior and meso-failure evolution of gabbro of different particle sizes[J]. Rock Mechanics and Rock Engineering, 2023, 56(12): 8947-8963. doi: 10.1007/s00603-023-03531-9
    [30]
    FAN L F, FAN Y D, XI Y, et al. Spatial failure mode analysis of frozen sandstone under uniaxial compression based on CT technology[J]. Rock Mechanics and Rock Engineering, 2022, 55(7): 4123-4138. doi: 10.1007/s00603-022-02859-y
    [31]
    查明, 尹向烟, 姜林, 等. CT扫描技术在石油勘探开发中的应用[J]. 地质科技情报, 2017, 36(4): 228-235.

    ZHA M, YIN X Y, JIANG L, et al. Application of CT technology in petroleum exploration and development[J]. Geological Science and Technology Information, 2017, 36(4): 228-235. (in Chinese with English abstract
    [32]
    SINGH M, RAJ A, SINGH B. Modified Mohr-Coulomb criterion for non-linear triaxial and polyaxial strength of intact rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(4): 546-555. doi: 10.1016/j.ijrmms.2011.02.004
    [33]
    GUO P Y, ZHANG P, BU M H, et al. Microcracking behavior and damage mechanism of granite subjected to high temperature based on CT-GBM numerical simulation[J]. Computers and Geotechnics, 2023, 159: 105385. doi: 10.1016/j.compgeo.2023.105385
    [34]
    LI H, MA H L, SHI X L, et al. A 3D grain-based model for simulating the micromechanical behavior of salt rock[J]. Rock Mechanics and Rock Engineering, 2020, 53(6): 2819-2837. doi: 10.1007/s00603-020-02085-4
    [35]
    TIAN W L, YANG S Q, WANG J G, et al. Numerical simulation of permeability evolution in granite after thermal treatment[J]. Computers and Geotechnics, 2020, 126: 103705. doi: 10.1016/j.compgeo.2020.103705
    [36]
    YIN T B, ZHUANG D D, LI M J, et al. Numerical simulation study on the thermal stress evolution and thermal cracking law of granite under heat conduction[J]. Computers and Geotechnics, 2022, 148: 104813. doi: 10.1016/j.compgeo.2022.104813
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(54) PDF Downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return