Volume 44 Issue 5
Sep.  2025
Turn off MathJax
Article Contents
YIN Zheng,CHEN Qingxiang,HE Jianbo,et al. Spatial characteristics and genetic mechanisms of geothermal resources in the Zhangye Basin based on multi-source fusion modeling and heat-flow coupling simulations[J]. Bulletin of Geological Science and Technology,2025,44(5):3-12 doi: 10.19509/j.cnki.dzkq.tb20230590
Citation: YIN Zheng,CHEN Qingxiang,HE Jianbo,et al. Spatial characteristics and genetic mechanisms of geothermal resources in the Zhangye Basin based on multi-source fusion modeling and heat-flow coupling simulations[J]. Bulletin of Geological Science and Technology,2025,44(5):3-12 doi: 10.19509/j.cnki.dzkq.tb20230590

Spatial characteristics and genetic mechanisms of geothermal resources in the Zhangye Basin based on multi-source fusion modeling and heat-flow coupling simulations

doi: 10.19509/j.cnki.dzkq.tb20230590
More Information
  • Author Bio:

    E-mail:zyyz8029@163.com

  • Corresponding author: E-mail:jinluo@cug.edu.cn
  • Received Date: 25 Oct 2023
  • Accepted Date: 12 Dec 2023
  • Rev Recd Date: 04 Dec 2023
  • Available Online: 18 Dec 2023
  • Objective

    The traditional temperature-pressure field analysis method relies heavily on the interpolation of existing borehole data, failing to accurately characterize the coupled seepage-heat transfer processes in geothermal systems. This limitation hinders a comprehensive understanding of genetic mechanisms of geothermal resources.

    Methods and Results

    To address these issues, we constructed a high-precision three-dimensional geological model of the Zhangye Basin by integrating multi-source datasets (borehole information, geophysical data, and digital elevation models). Our integrated approach improved the stratigraphic accuracy between boreholes by 50–300 m compared to conventional interpolation models.Numerical simulations of coupled seepage-heat transfer processes based on the 3D geological model indicated that, compared with the traditional key-node spatial interpolation method, the multi-field coupling analysis more reasonably revealed the temperature and pressure characteristics of the reservoir in the study area. The results showed that in the study area, the geothermal hydraulic head is relatively high in the southeastern part of the basin center and gradually decreases toward the northwest, indicating an overall southeast-to-northwest seepage pattern. Groundwater was recharged into the reservoir through faults and became fully heated by the geothermal field during seepage. As the reservoir depth decreased and the caprock thinned, heat was gradually lost, resulting in a temperature field characterized by higher values in the middle and lower values around the margins, with a central temperature reaching up to 78 °C. A three-dimensional geothermal conceptual model was subsequently developed, which comprehensively interpreted the genetic mechanism of geothermal resources in the basin by integrating structural, hydrogeological, and geothermal geological conditions. Compared with previous two-dimensional models, the three-dimensional conceptual model and the coupled heat–fluid analysis method developed in this study more accurately describe the spatial distribution characteristics of geothermal resources and provide a more reasonable explanation for their genetic mechanisms.

    Conclusion

    The results reveal the southeast-to-northwest groundwater flow within the reservoir and the genetic mechanism underlying the rhombic-lobate distribution of geothermal resources in the basin. These findings provide a theoretical framework for targeting high-enthalpy geothermal reservoirs and optimizing sustainable exploitation strategies.

     

  • loading
  • [1]
    李曼, 张薇, 廖煜钟, 等. 鲁中南典型地热区地热水氟分布特征及其驱动机制[J]. 地质科技通报, 2024, 43(3): 36-47.

    LI M, ZHANG W, LIAO Y Z, et al. Characteristics and mechanisms of fluorine enrichment in the geothermal water of south central Shandong Province[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 36-47. (in Chinese with English abstract
    [2]
    尚建波, 卫兴, 曹园园, 等. 不同类型地热水硼的地球化学特征及对地热系统成因机制的指示[J]. 地质科技通报, 2024, 43(1): 288-297.

    SHANG J B, WEI X, CAO Y Y, et al. Boron geochemical characteristics in different types of geothermal water and its indications for the genesis mechanism of geothermal systems[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 288-297. (in Chinese with English abstract
    [3]
    王贵玲, 陆川. 碳中和目标驱动下地热资源开采利用技术进展[J]. 地质与资源, 2022, 31(3): 412-425.

    WANG G L, LU C. Progress of geothermal resources exploitation and utilization technology driven by carbon neutralization target[J]. Geology and Resources, 2022, 31(3): 412-425. (in Chinese with English abstract
    [4]
    李曼, 邢林啸, 王贵玲, 等. 冀中坳陷地区地下热水氟分布特征及其风险评估和开发利用建议[J]. 中国地质, 2023, 50(6): 1857-1870.

    LI M, XING L X, WANG G L, et al. Distribution characteristics of fluorine in deep geothermal water in Jizhong Depression and its risk assessment and development utilization suggestions[J]. Geology in China, 2023, 50(6): 1857-1870. (in Chinese with English abstract
    [5]
    许天福, 姜振蛟, 袁益龙. 中深部地热资源开发利用研究现状与展望[J]. 中国基础科学, 2023, 25(3): 11-22. doi: 10.3969/j.issn.1009-2412.2023.03.002

    XU T F, JIANG Z J, YUAN Y L. Research status and prospects of middle and deep geothermal resources exploitation and utilization[J]. China Basic Science, 2023, 25(3): 11-22. (in Chinese with English abstract doi: 10.3969/j.issn.1009-2412.2023.03.002
    [6]
    LEPTOKAROPOULOS K, STASZEK M, LASOCKI S, et al. Evolution of seismicity in relation to fluid injection in the north-western part of The Geysers geothermal field[J]. Geophysical Journal International, 2018, 212(2): 1157-1166. doi: 10.1093/gji/ggx481
    [7]
    闫坪卉. 我国地热产业持续高质量发展[N]. 中国石化报, 2023-09-18(2).

    YAN P H. China's geothermal industry continues to develop with high quality[N]. China Petrochemical New, 2023-09-18(2). (in Chinese)
    [8]
    欧浩, 卢国平, 胡晓农, 等. 广东省信宜−廉江地区地热水中氟的富集过程[J]. 环境化学, 2019, 38(5): 1128-1138.

    OU H, LU G P, HU X N, et al. Fluoride enrichment in geothermal waters in Xinyi-Lianjiang region, Guangdong[J]. Environmental Chemistry, 2019, 38(5): 1128-1138. (in Chinese with English abstract
    [9]
    汪集暘, 庞忠和, 程远志, 等. 全球地热能的开发利用现状与展望[J]. 科技导报, 2023, 41(12): 5-11.

    WANG J Y, PANG Z H, CHENG Y Z, et al. Current state, utilization and prospective of global geothermal energy[J]. Science & Technology Review, 2023, 41(12): 5-11. (in Chinese with English abstract
    [10]
    朱喜, 王贵玲, 马峰, 等. 雄安新区地热资源潜力评价[J]. 地球科学, 2023, 48(3): 1093-1106.

    ZHU X, WANG G L, MA F, et al. Evaluation of geothermal resources of the Xiong'an New Area[J]. Earth Science, 2023, 48(3): 1093-1106. (in Chinese with English abstract
    [11]
    杜垚森, 封优生, 伍晓龙, 等. 深部地热能开发保温管技术研究现状及发展趋势[J]. 钻探工程, 2022, 49(6): 138-145. doi: 10.12143/j.ztgc.2022.06.019

    DU Y S, FENG Y S, WU X L, et al. Research status and consideration of thermal insulation pipe technology for deep geothermal energy development[J]. Drilling Engineering, 2022, 49(6): 138-145. (in Chinese with English abstract doi: 10.12143/j.ztgc.2022.06.019
    [12]
    王贵玲, 杨轩, 马凌, 等. 地热能供热技术的应用现状及发展趋势[J]. 华电技术, 2021, 43(11): 15-24.

    WANG G L, YANG X, MA L, et al. Status quo and prospects of geothermal energy in heat supply[J]. Huadian Technology, 2021, 43(11): 15-24. (in Chinese with English abstract
    [13]
    尹政, 田辽西, 张旭儒, 等. 张掖城区及外围地热资源普查报告[R]. 兰州: 甘肃省地矿局水文地质工程地质勘察院, 2018.

    YIN Z, TIAN L X, ZHANG X R, et al. Geothermal resources survey in Zhangye City and its periphery[R]. Lanzhou: Institute of Hydrogeoloical and Engineering Geology, Gansu Provincial Bureau of Geology and Mineral Exploration and Development, 2018. (in Chinese)
    [14]
    张振杰, 李兴海, 胡潇. 综合物探方法在张掖城区及外围深部地热资源勘查中的应用研究[J]. 地下水, 2018, 40(4): 52-54. doi: 10.3969/j.issn.1004-1184.2018.04.016

    ZHANG Z J, LI X H, HU X. The application of comprehensive geophysical prospecting method in the exploration of deep geothermal resources in Zhangye City and its periphery[J]. Ground Water, 2018, 40(4): 52-54. (in Chinese with English abstract doi: 10.3969/j.issn.1004-1184.2018.04.016
    [15]
    俞兆虎, 滕汉仁, 李百祥. 张掖−民乐盆地地质−地球物理信息揭示的地热资源前景与勘查方法优化组合[J]. 甘肃地质, 2018, 27(增刊1): 79-84.

    YU Z H, TENG H R, LI B X. On geothermal resource potential and optimization prospecting methods in terms of geology-geophysical information in Zhangye-Minle Basin[J]. Gansu Geology, 2018, 27(S1): 79-84. (in Chinese with English abstract
    [16]
    梁雨东, 任康辉, 姜鑫, 等. 活性炭测氡法在地热勘探中的应用: 以张掖−民乐盆地为例[J]. 物探与化探, 2022, 46(6): 1419-1424.

    LIANG Y D, REN K H, JIANG X, et al. Application of the activated charcoal radon measurement in the geothermal exploration: A study of the Zhangye-Minle Basin[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1419-1424. (in Chinese with English abstract
    [17]
    魏红军, 李百祥. 张掖−民乐盆地地质构造特征与张掖市地热资源开发可行性分析[J]. 甘肃地质, 2007, 16(4): 73-76.

    WEI H J, LI B X. Characteristics of geological structures in Zhangye-Minle Basin and feasibility study of geothermal resources in Zhangye City[J]. Gansu Geology, 2007, 16(4): 73-76. (in Chinese with English abstract
    [18]
    尹政, 柳永刚, 张旭儒, 等. 张掖−民乐盆地中新生界地层结构及对地热的控制作用[J]. 甘肃地质, 2021, 30(3): 49-56.

    YIN Z, LIU Y G, ZHANG X R, et al. Mesozoic Cenozoic stratigraphic structure and its control on geothermal energy in Zhangye-Minle Basin[J]. Gansu Geology, 2021, 30(3): 49-56. (in Chinese with English abstract
    [19]
    王具文, 张旭儒, 宁天祥, 等. 张掖盆地地热资源流体化学特征研究[J]. 地下水, 2019, 41(4): 17-19. doi: 10.3969/j.issn.1004-1184.2019.04.006

    WANG J W, ZHANG X R, NING T X, et al. Study on fluid chemical characteristics of geothermal resources in Zhangye Basin[J]. Ground Water, 2019, 41(4): 17-19. (in Chinese with English abstract doi: 10.3969/j.issn.1004-1184.2019.04.006
    [20]
    王具文, 张旭儒, 宁天祥, 等. 张掖盆地地热资源地质特征分析与研究[J]. 地下水, 2019, 41(3): 5-6. doi: 10.3969/j.issn.1004-1184.2019.03.002

    WANG J W, ZHANG X R, NING T X, et al. Analysis and research on geological characteristics of geothermal resources in Zhangye Basin[J]. Ground Water, 2019, 41(3): 5-6. (in Chinese with English abstract doi: 10.3969/j.issn.1004-1184.2019.03.002
    [21]
    张旭儒, 冯建宏, 李小燕. 甘肃省张掖盆地地热资源量评价分析[J]. 地下水, 2020, 42(4): 73-75.

    ZHANG X R, FENG J H, LI X Y. Evaluation and analysis of geothermal resources in Zhangye Basin, Gansu Province[J]. Ground Water, 2020, 42(4): 73-75. (in Chinese with English abstract
    [22]
    MOHAMMADI Z, BAGHERI R, JAHANSHAHI R. Hydrogeochemistry and geothermometry of Changal thermal springs, Zagros region, Iran[J]. Geothermics, 2010, 39(3): 242-249. doi: 10.1016/j.geothermics.2010.06.007
    [23]
    WANG M M, ZHOU X, LIU Y, et al. Major, trace and rare earth elements geochemistry of geothermal waters from the Rehai high-temperature geothermal field in Tengchong of China[J]. Applied Geochemistry, 2020, 119: 104639. doi: 10.1016/j.apgeochem.2020.104639
    [24]
    LI X, QI J H, YI L, et al. Hydrochemical characteristics and evolution of geothermal waters in the eastern Himalayan syntaxis geothermal field, southern Tibet[J]. Geothermics, 2021, 97: 102233. doi: 10.1016/j.geothermics.2021.102233
    [25]
    孙红丽, 马峰, 蔺文静, 等. 西藏高温地热田地球化学特征及地热温标应用[J]. 地质科技情报, 2015, 34(3): 171-177.

    SUN H L, MA F, LIN W J, et al. Geochemical characteristics and geothermometer application in high temperature geothermal field in Tibet[J]. Geological Science and Technology Information, 2015, 34(3): 171-177. (in Chinese with English abstract
    [26]
    ELENGA H I, TAN H B, SU J B, et al. Origin of the enrichment of B and alkali metal elements in the geothermal water in the Tibetan Plateau: Evidence from B and Sr isotopes[J]. Geochemistry, 2021, 81(3): 125797. doi: 10.1016/j.chemer.2021.125797
    [27]
    张薇, 王贵玲, 刘峰, 等. 中国沉积盆地型地热资源特征[J]. 中国地质, 2019, 46(2): 255-268. doi: 10.12029/gc20190204

    ZHANG W, WANG G L, LIU F, et al. Characteristics of geothermal resources in sedimentary basins[J]. Geology in China, 2019, 46(2): 255-268. (in Chinese with English abstract doi: 10.12029/gc20190204
    [28]
    翟光明. 中国石油地质志−卷十三−玉门油田[M]. 北京: 石油工业出版社, 1989: 236-261.

    ZHAI G M. Petroleum geology of China(Vol. 13): Yumen Oilfield[M]. Beijing: Petroleum Industry Press, 1989: 236-261. (in Chinese)
    [29]
    KUMAR R, YAZDAN M M S. Evaluating preventive measures for flooding from groundwater: A case study[J]. J-Multidisciplinary Scientific Journal, 2023, 6(1): 1-16.
    [30]
    PAYNE K, CHAMI P, ODLE I, et al. Machine learning for surrogate groundwater modeling of a small carbonate island[J]. Hydrology, 2023, 10(1): 2.
    [31]
    WEI T, TAO Y Z, REN H L, et al. The analytical solution of an unsteady state heat transfer model for the confined aquifer under the influence of water temperature variation in the river channel[J]. Water, 2022, 14(22): 3698. doi: 10.3390/w14223698
    [32]
    KARMAKAR S, TATOMIR A, OEHLMANN S, et al. Numerical benchmark studies on flow and solute transport in geological reservoirs[J]. Water, 2022, 14(8): 1310. doi: 10.3390/w14081310
    [33]
    李俊亭, 王愈吉. 地下水动力学[M]. 北京: 地质出版社, 1987.

    LI J T, WANG Y J. Groundwater water dynamics[M]. Beijing: Geological Publishing House, 1987. (in Chinese)
    [34]
    王社教, 李峰, 闫家泓, 等. 油田地热资源评价方法及应用[J]. 石油学报, 2020, 41(5): 553-564.

    WANG S J, LI F, YAN J H, et al. Evaluation methods and application of geothermal resources in oilfields[J]. Acta Petrolei Sinica, 2020, 41(5): 553-564. (in Chinese with English abstract
    [35]
    RASTORGUEV I A, LUKANOV D D. Application of codes for dynamic adaptation of a grid model in solving problems of drawdown in the DHI FEFLOW software[J]. Power Technology and Engineering, 2023, 56(5): 698-702. doi: 10.1007/s10749-023-01576-y
    [36]
    DIERSCH H, BAUER D, HEIDEMANN W, et al. Finite element formulation for borehole heat exchangers in modeling geothermal heating systems by FEFLOW[J]. WASY Software FEFLOW White Paper, 2010, 5: 130862105.
    [37]
    DIERSCH H G. Discrete feature modeling of flow, mass and heat transport processes[M]. Berlin, Heidelberg: Springer, 2013: 711-756.
    [38]
    姜光政, 高堋, 饶松, 等. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报, 2016, 59(8): 2892-2910. doi: 10.6038/cjg20160815

    JIANG G Z, GAO P, RAO S, et al. Compilation of heat flow data in the continental area of China(4th edition)[J]. Chinese Journal of Geophysics, 2016, 59(8): 2892-2910. (in Chinese with English abstract doi: 10.6038/cjg20160815
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(805) PDF Downloads(214) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return