| Citation: | CHEN Yue,ZHANG Jianxin,WANG Li,et al. Reconstruction of source-sink system and sand control mechanisms in continental faulted lake basins: A case study of the First Member of the Wenchang Formation in the Wenchang Sag of the Pearl River Mouth Basin[J]. Bulletin of Geological Science and Technology,2025,44(4):273-287 doi: 10.19509/j.cnki.dzkq.tb20250087 |
Controlled by complex factors such as basin structure, climate, and water depth, the quantitative reconstruction of source-sink systems, sand transport pathways, and sedimentation processes in rifting lacustrine basins remains a persistent challenge. This study addresses this knowledge gap by investigating the First Member of the Wenchang Formation in the Wenchang Sag of the western Pearl River Mouth Basin.
Key elements of the source-sink system are quantitatively analyzed through methods including the restoration of lithology and geomorphology in the provenance area, characterization of paleo-valleys, recognition of fault boundary patterns, and determination of sedimentary body types and scales. The coupling relationships between these elements are then discussed.
The results show that the deposition of the First Member of the Wenchang Formation was dominated by fan delta, braided river delta, and shore-shallow lacustrine deposits. The bedrock types of the provenance area are primarily magmatic and sedimentary rocks, with seven provenance systems identified. Four sand control mechanisms within the source-sink system are recognized, and a total of 37 paleo-valleys are identified. In the steep slope zone, sedimentary sand bodies show the closest correlation with elevation difference, watershed area, and cross-sectional area of the valley. In contrast, the ramp zone exhibits the strongest correlation with watershed area, valley length, and cross-sectional area of the valley.
These findings provide a basis for describing sedimentary systems in continental rifting lacustrine basins.
| [1] |
WALSH J P,WIBERG P L,AALTO R,et al. Source-to-sink research:Economy of the earth's surface and its strata[J]. Earth Science Reviews,2016,153:1-6.
|
| [2] |
朱红涛,徐长贵,朱筱敏,等. 陆相盆地源−汇系统要素耦合研究进展[J]. 地球科学,2017,42(11):1851-1870.
ZHU H T,XU C G,ZHU X M,et al. Advances of the source-to-sink units and coupling model research in continental basin[J]. Earth Science,2017,42(11):1851-1870. (in Chinese with English abstract
|
| [3] |
聂银兰,朱筱敏,董艳蕾,等. 陆相断陷盆地源−汇系统要素表征及研究展望[J]. 地质论评,2022,68(5):1881-1896.
NIE Y L,ZHU X M,DONG Y L,et al. Characterization and research prospect of source-to-sink system elements in continental rift basin[J]. Geological Review,2022,68(5):1881-1896. (in Chinese with English abstract
|
| [4] |
徐长贵. 陆相断陷盆地源−汇时空耦合控砂原理:基本思想、概念体系及控砂模式[J]. 中国海上油气,2013,25(4):1-11.
XU C G. Controlling sand principle of source-sink coupling in time and space in continental rift basins:Basic idea,conceptual systems and controlling sand models[J]. China Offshore Oil and Gas,2013,25(4):1-11. (in Chinese with English abstract
|
| [5] |
刘强虎,李志垚,陈贺贺,等. 陆相裂陷盆地深时源−汇系统关键地质问题及革新方向[J]. 地球科学,2023,48(12):4586-4612.
LIU Q H,LI Z Y,CHEN H H,et al. Key geological issues and innovation directions in deep-time source-to-sink system of continental rift basins[J]. Earth Science,2023,48(12):4586-4612. (in Chinese with English abstract
|
| [6] |
龚承林,齐昆,徐杰,等. 深水源−汇系统对多尺度气候变化的过程响应与反馈机制[J]. 沉积学报,2021,39(1):231-252.
GONG C L,QI K,XU J,et al. Process-product linkages and feedback mechanisms of deepwater source-to-sink responses to multi-scale climate changes[J]. Acta Sedimentologica Sinica,2021,39(1):231-252. (in Chinese with English abstract
|
| [7] |
陈星渝,张志杰,万力,等. 深时源-汇系统要素的常用定量分析方法[J]. 地质科技通报,2024,43(1):89-107.
CHEN X Y,ZHANG Z J,WAN L,et al. Quantitative analysis methods of source-to-sink systems in deep-time and their progress[J]. Bulletin of Geological Science and Technology,2024,43(1):89-107. (in Chinese with English abstract
|
| [8] |
陈林,李珊珊,游君君,等. 文昌B凹陷古近系低渗储层物性影响因素定量评价与应用[J]. 地质科技情报,2019,38(3):165-173.
CHEN L,LI S S,YOU J J,et al. Quantitative evaluation and application of factors affecting the properties of low permeability reservoirs from the Paleogene in Wenchang B Sag[J]. Geological Science and Technology Information,2019,38(3):165-173. (in Chinese with English abstract
|
| [9] |
杨希冰,常露,徐睿,等. 珠江口盆地文昌凹陷陆相坡折带类型及其控砂作用[J]. 地球科学,2020,45(3):989-997.
YANG X B,CHANG L,XU R,et al. Types and sand control effect of terrestrial slope breaks of Wenchang Sag inside the Pearl River Mouth Basin[J]. Earth Science,2020,45(3):989-997. (in Chinese with English abstract
|
| [10] |
李俊良,雷宝华,郑求根,等. 珠江口盆地文昌凹陷应力场演化及其对成藏要素的控制作用[J]. 大地构造与成矿学,2015,39(4):601-609.
LI J L,LEI B H,ZHENG Q G,et al. Stress field evolution and its controls on oil accumulation in the Wenchang Sag[J]. Geotectonica et Metallogenia,2015,39(4):601-609. (in Chinese with English abstract
|
| [11] |
赵迎冬,甘华军,陈善斌,等. 珠琼运动的厘定:来自北部湾盆地福山凹陷构造沉积特征的启示[J]. 中国地质,2015,42(4):948-959. doi: 10.3969/j.issn.1000-3657.2015.04.012
ZHAO Y D,GAN H J,CHEN S B,et al. Determination of Zhu-Qiong movement:The enlightenment from tectonic and sedimentary characteristics of Fushan Sag,Beibuwan Basin[J]. Geology in China,2015,42(4):948-959. (in Chinese with English abstract doi: 10.3969/j.issn.1000-3657.2015.04.012
|
| [12] |
王家豪,刘丽华,陈胜红,等. 珠江口盆地恩平凹陷珠琼运动二幕的构造—沉积响应及区域构造意义[J]. 石油学报,2011,32(4):588-595. doi: 10.7623/syxb201104005
WANG J H,LIU L H,CHEN S H,et al. Tectonic-sedimentary responses to the second episode of the Zhu-Qiong movement in the Enping Depression,Pearl River Mouth Basin and its regional tectonic significance[J]. Acta Petrolei Sinica,2011,32(4):588-595. (in Chinese with English abstract doi: 10.7623/syxb201104005
|
| [13] |
杜晓峰,庞小军,黄晓波,等. 辽西凹陷北部古近系沙河街组二段源-汇系统及其对滩坝砂体的控制[J]. 石油与天然气地质,2023,44(3):662-674. doi: 10.11743/ogg20230311
DU X F,PANG X J,HUANG X B,et al. Characteristics of the source-to-sink system for the Paleogene Sha 2 Member of northern Liaoxi Sag,offshore Bohai Bay Basin and its control on beach bar sands[J]. Oil & Gas Geology,2023,44(3):662-674. (in Chinese with English abstract doi: 10.11743/ogg20230311
|
| [14] |
宋凯,吕剑文,杜金良,等. 鄂尔多斯盆地中部上三叠统延长组物源方向分析与三角洲沉积体系[J]. 古地理学报,2002,4(3):59-66. doi: 10.3969/j.issn.1671-1505.2002.03.008
SONG K,LYU J W,DU J L,et al. Source direction analysis and delta depositional systems of Yanchang Formation of the Upper Triassic in the central Ordos Basin[J]. Journal of Palaeogeography,2002,4(3):59-66. (in Chinese with English abstract doi: 10.3969/j.issn.1671-1505.2002.03.008
|
| [15] |
彭光荣,王绪诚,陈维涛,等. 珠江口盆地惠州26洼东南缘古近系恩平组上段断−坳转换期源−汇系统及勘探意义[J]. 石油与天然气地质,2023,44(3):613-625. doi: 10.11743/ogg20230307
PENG G R,WANG X C,CHEN W T,et al. Source-to-sink system during rifting-depression transition period and its exploration significance:A case study of the Upper Enping Formation at southeastern margin of Huizhou 26 Sub-Sag,Pearl River Mouth Basin[J]. Oil & Gas Geology,2023,44(3):613-625. (in Chinese with English abstract doi: 10.11743/ogg20230307
|
| [16] |
张世杰,蒲秀刚,李勇,等. 黄骅坳陷孔店南部枣Ⅲ油组物源分析[J]. 现代地质,2013,27(1):186-190. doi: 10.3969/j.issn.1000-8527.2013.01.021
ZHANG S J,PU X G,LI Y,et al. Provenance analysis of ZaoⅢ reservoir group in southern Kongdian of Huanghua Depression[J]. Geoscience,2013,27(1):186-190. (in Chinese with English abstract doi: 10.3969/j.issn.1000-8527.2013.01.021
|
| [17] |
WELTJE G J,VON EYNATTEN H. Quantitative provenance analysis of sediments:Review and outlook[J]. Sedimentary Geology,2004,171(1/2/3/4):1-11.
|
| [18] |
LEWIN A,MEINHOLD G,HINDERER M,et al. Heavy minerals as provenance indicator in glaciogenic successions:An example from the Palaeozoic of Ethiopia[J]. Journal of African Earth Sciences,2020,165:103813. doi: 10.1016/j.jafrearsci.2020.103813
|
| [19] |
曹立成,姜涛,王振峰,等. 琼东南盆地新近系重矿物分布特征及其物源指示意义[J]. 中南大学学报(自然科学版),2013,44(5):1971-1981.
CAO L C,JIANG T,WANG Z F,et al. Characteristics of heavy minerals and their implications for Neogene provenances evolution in Qiongdongnan Basin[J]. Journal of Central South University (Science and Technology),2013,44(5):1971-1981. (in Chinese with English abstract
|
| [20] |
ALLEN P A,ARMITAGE J J,CARTER A,et al. The Qs problem:Sediment volumetric balance of proximal foreland basin systems[J]. Sedimentology,2013,60(1):102-130.
|
| [21] |
肖凡,朱红涛,徐长贵,等. 利用前积角“玫瑰花” 图判断前积体主物源方向[J]. 石油地球物理勘探,2017,52(1):181-188.
XIAO F,ZHU H T,XU C G,et al. Main provenance direction determination with the rose diagram of progradation angle[J]. Oil Geophysical Prospecting,2017,52(1):181-188. (in Chinese with English abstract
|
| [22] |
张金伟,王军,吴明荣. 利用地震前积反射特征确定古水流方向的沉积几何方法[J]. 油气地质与采收率,2008,15(5):53-55. doi: 10.3969/j.issn.1009-9603.2008.05.015
ZHANG J W,WANG J,WU M R. A geometrical method of calculating paleocurrent direction using seismic progradation reflection characteristics[J]. Petroleum Geology and Recovery Efficiency,2008,15(5):53-55. (in Chinese with English abstract doi: 10.3969/j.issn.1009-9603.2008.05.015
|
| [23] |
姜正龙,邓宏文,林会喜,等. 古地貌恢复方法及应用:以济阳坳陷桩西地区沙二段为例[J]. 现代地质,2009,23(5):865-871. doi: 10.3969/j.issn.1000-8527.2009.05.015
JIANG Z L,DENG H W,LIN H X,et al. Methods and application of paleo-geomorphologies rebuilding:An example of the Second Member of Shahejie Formation,Zhuangxi area,Jiyang Depression[J]. Geoscience,2009,23(5):865-871. (in Chinese with English abstract doi: 10.3969/j.issn.1000-8527.2009.05.015
|
| [24] |
何文军,郑孟林,费李莹,等. 陆相坳陷盆地边缘沉积区古地貌恢复:以准噶尔盆地玛湖地区三叠系百口泉组为例[J]. 古地理学报,2019,21(5):803-816. doi: 10.7605/gdlxb.2019.05.054
HE W J,ZHENG M L,FEI L Y,et al. Ancient landform restoration of marginal sedimentary area in the continental depression basin:A case study of the Triassic Baikouquan Formation in Mahu area of Junggar Basin[J]. Journal of Palaeogeography (Chinese Edition),2019,21(5):803-816. (in Chinese with English abstract doi: 10.7605/gdlxb.2019.05.054
|
| [25] |
李想,付磊,魏璞,等. 沉积古地貌恢复及古地貌对沉积体系的控制作用:以准噶尔盆地石西地区三叠系百口泉组为例[J]. 岩性油气藏,2025,37(2):38-48. doi: 10.12108/yxyqc.20250204
LI X,FU L,WEI P,et al. Restoration of sedimentary paleogeography and its control on sedimentary system:A case study of the Triassic Baikouquan Formation in Shixi area of Junggar Basin[J]. Lithologic Reservoirs,2025,37(2):38-48. (in Chinese with English abstract doi: 10.12108/yxyqc.20250204
|
| [26] |
XIN Y L,REN J Y,LI J P. Control of tectonic-paleogeomorphology on deposition:A case from the Shahejie Formation Sha 3 Member,Laizhouwan Sag,southern Bohai Sea[J]. Petroleum Exploration and Development,2013,40(3):325-332. doi: 10.1016/S1876-3804(13)60039-7
|
| [27] |
朱红涛,徐长贵,杜晓峰,等. 陆相盆地古源−汇系统定量重建、级次划分及耦合模式[J]. 石油与天然气地质,2023,44(3):539-552. doi: 10.11743/ogg20230302
ZHU H T,XU C G,DU X F,et al. Quantitative reconstruction,hierarchical division and coupling mode establishment for ancient source-to-sink systems in continental basins[J]. Oil & Gas Geology,2023,44(3):539-552. (in Chinese with English abstract doi: 10.11743/ogg20230302
|
| [28] |
冯斌,黄晓波,何幼斌,等. 渤海湾盆地庙西北地区古近系沙河街组三段源−汇系统重建[J]. 岩性油气藏,2024,36(3):84-95. doi: 10.12108/yxyqc.20240308
FENG B,HUANG X B,HE Y B,et al. Reconstruction of source-to-sink system of the Third Member of Paleogene Shahejie Formation in Miaoxibei area,Bohai Bay Basin[J]. Lithologic Reservoirs,2024,36(3):84-95. (in Chinese with English abstract doi: 10.12108/yxyqc.20240308
|
| [29] |
胡贺伟,李慧勇,于海波,等. 渤海湾盆地埕北低凸起及围区古近系“源−汇” 系统控砂原理定量分析[J]. 古地理学报,2020,22(2):266-277. doi: 10.7605/gdlxb.2020.10.238
HU H W,LI H Y,YU H B,et al. Quantitative analysis of source-to-sink system controls on sand-body distribution of the Paleogene in Chengbei low uplift and surrounding areas,Bohai Bay Basin[J]. Journal of Palaeogeography (Chinese Edition),2020,22(2):266-277. (in Chinese with English abstract doi: 10.7605/gdlxb.2020.10.238
|
| [30] |
朱珍君,李琦,陈贺贺,等. 东海陆架盆地丽水凹陷古新统源−汇系统耦合及时−空演化[J]. 石油与天然气地质,2023,44(3):735-752. doi: 10.11743/ogg20230316
ZHU Z J,LI Q,CHEN H H,et al. Source-to-sink coupling and temporal-spatial evolution in the Lishui Sag of East China Sea Shelf Basin during the Paleocene[J]. Oil & Gas Geology,2023,44(3):735-752. (in Chinese with English abstract doi: 10.11743/ogg20230316
|
| [31] |
蔡全升,胡明毅,陈孝红,等. 小型断陷湖盆扇三角洲沉积特征与发育模式:以徐家围子断陷北部沙河子组为例[J]. 岩性油气藏,2018,30(1):86-96. doi: 10.3969/j.issn.1673-8926.2018.01.009
CAI Q S,HU M Y,CHEN X H,et al. Sedimentary characteristics and development model of fan delta in small faulted basin:A case of Shahezi Formation in northern Xujiaweizi Fault Depression,NE China[J]. Lithologic Reservoirs,2018,30(1):86-96. (in Chinese with English abstract doi: 10.3969/j.issn.1673-8926.2018.01.009
|
| [32] |
纪友亮,李清山,王勇,等. 高邮凹陷古近系戴南组扇三角洲沉积体系及其沉积相模式[J]. 地球科学与环境学报,2012,34(1):9-19. doi: 10.3969/j.issn.1672-6561.2012.01.002
JI Y L,LI Q S,WANG Y,et al. Fan delta sedimentary system and facies models of Dainan Formation of Paleogene in Gaoyou Sag[J]. Journal of Earth Sciences and Environment,2012,34(1):9-19. (in Chinese with English abstract doi: 10.3969/j.issn.1672-6561.2012.01.002
|
| [33] |
MCPHERSON J G,SHANMUGAM G,MOIOLA R J. Fan-deltas and braid deltas:Varieties of coarse-grained deltas[J]. Geological Society of America Bulletin,1987,99(3):331. doi: 10.1130/0016-7606(1987)99<331:FABDVO>2.0.CO;2
|
| [34] |
何岸北,胡煜昭,任涛,等. 新疆乌拉根铅锌矿克五段扇三角洲沉积模式[J]. 沉积学报,2020,38(2):245-256.
HE A B,HU Y Z,REN T,et al. Sedimentary model of fan delta in the Fifth Member of Kizilsu Group in Uragen Pb-Zn deposit,Xinjiang[J]. Acta Sedimentologica Sinica,2020,38(2):245-256. (in Chinese with English abstract
|
| [35] |
LIU B B,TAN C P,YU X H,et al. Sedimentary characteristics and controls of a retreating,coarse-grained fan-delta system in the Lower Triassic,Mahu Depression,northwestern China[J]. Geological Journal,2019,54(3):1141-1159. doi: 10.1002/gj.3215
|
| [36] |
李茂,李胜利,姜平,等. 北部湾盆地涠西南凹陷涠11区流一段扇三角洲沉积特征及控制因素[J]. 现代地质,2013,27(4):915-924. doi: 10.3969/j.issn.1000-8527.2013.04.018
LI M,LI S L,JIANG P,et al. Sedimentary characteristics of fan deltas and the dominated factors in W11 area of 1st Member of Liushagang Formation in Weixinan Depression,Beibuwan Basin[J]. Geoscience,2013,27(4):915-924. (in Chinese with English abstract doi: 10.3969/j.issn.1000-8527.2013.04.018
|
| [37] |
刘磊,钟怡江,陈洪德,等. 中国东部箕状断陷湖盆扇三角洲与辫状河三角洲对比研究[J]. 沉积学报,2015,33(6):1170-1181.
LIU L,ZHONG Y J,CHEN H D,et al. Contrastive research of fan deltas and braided river deltas in half-graben rift lake basin in East China[J]. Acta Sedimentologica Sinica,2015,33(6):1170-1181. (in Chinese with English abstract
|
| [38] |
赵春娟,徐淑娟,程宏岗,等. 松辽盆地徐家围子断陷沙河子组沉积相类型及演化模式[J]. 沉积学报,2024,42(4):1460-1478.
ZHAO C J,XU S J,CHENG H G,et al. Sedimentary facies types and evolution models of the Shahezi Formation in the Xujiaweizi Fault Depression,Songliao Basin[J]. Acta Sedimentologica Sinica,2024,42(4):1460-1478. (in Chinese with English abstract
|
| [39] |
赵汉卿,李超,郭诚,等. 渤海湾盆地莱州湾凹陷沙三上段近源砂质辫状河三角洲沉积特征[J]. 世界地质,2024,43(1):37-46.
ZHAO H Q,LI C,GUO C,et al. Sedimentary characteristics of near source sandy braided river delta in the Upper 3rd Member of Shahejie Formation in Laizhou Bay Sag,Bohai Bay Basin[J]. World Geology,2024,43(1):37-46. (in Chinese with English abstract
|
| [40] |
陶文芳,葛家旺,雷永昌,等. 转换斜坡型辫状河三角洲沉积特征:以珠江口盆地惠州凹陷始新统为例[J]. 地质科技通报,2023,42(5):103-114.
TAO W F,GE J W,LEI Y C,et al. Depositional characteristics of a relay ramp controlled braided deltaic system:A case study in the Eocene Huizhou Sag,Pearl River Mouth Basin,China[J]. Bulletin of Geological Science and Technology,2023,42(5):103-114. (in Chinese with English abstract
|
| [41] |
侯国伟,李帅,秦兰芝,等. 西湖凹陷西部斜坡带平湖组源−汇体系特征[J]. 中国海上油气,2019,31(3):29-39.
HOU G W,LI S,QIN L Z,et al. Source-to-sink system of Pinghu Formation in west slope belt of Xihu Sag,East China Sea Basin[J]. China Offshore Oil and Gas,2019,31(3):29-39. (in Chinese with English abstract
|
| [42] |
李建平,辛仁臣,向淑敏,等. 渤海湾盆地黄河口凹陷古近系东营组三段沉积特征[J]. 古地理学报,2008,10(4):363-370. doi: 10.7605/gdlxb.2008.04.004
LI J P,XIN R C,XIANG S M,et al. Sedimentary characteristics of the Member 3 of Paleogene Dongying Formation in Huanghekou Sag,Bohai Bay Basin[J]. Journal of Palaeogeography,2008,10(4):363-370. (in Chinese with English abstract doi: 10.7605/gdlxb.2008.04.004
|