Volume 44 Issue 3
May  2025
Turn off MathJax
Article Contents
MIAO Haibo,MA Chuang,YANG Bingying,et al. Dynamic assessment of landslide susceptibility considering the InSAR deformation influenced by Typhoon Megi: A case study of Songyang Country in Zhejiang Province[J]. Bulletin of Geological Science and Technology,2025,44(3):228-241 doi: 10.19509/j.cnki.dzkq.tb20240500
Citation: MIAO Haibo,MA Chuang,YANG Bingying,et al. Dynamic assessment of landslide susceptibility considering the InSAR deformation influenced by Typhoon Megi: A case study of Songyang Country in Zhejiang Province[J]. Bulletin of Geological Science and Technology,2025,44(3):228-241 doi: 10.19509/j.cnki.dzkq.tb20240500

Dynamic assessment of landslide susceptibility considering the InSAR deformation influenced by Typhoon Megi: A case study of Songyang Country in Zhejiang Province

doi: 10.19509/j.cnki.dzkq.tb20240500
More Information
  • Corresponding author: E-mail:mhblowal@126.com
  • Received Date: 03 Sep 2024
  • Accepted Date: 02 Jan 2025
  • Rev Recd Date: 29 Nov 2024
  • Available Online: 27 Apr 2025
  • Objective

    Landslide susceptibility assessment (LSA) plays a vital role in predicting landslide occurrence and potential risks. However, static susceptibility maps are limited in reliability their failure to account for dynamic evolution of landslides. This study aims to enhance landslide susceptibility assessment by incorporating dynamic factors through Sentinel-1A SAR data, which is derived from Songyang County, Zhejiang Province: A resion impacted by Typhoon Megi in 2016.

    Methods

    The methodology involved three key steps. First, D-InSAR technology was used to measure ground deformation before and after Typhoon Megi. A deformation rate of −20 mm/a was set as the threshold to augment the landslide inventory. Second, SBAS-InSAR technology was applied to obtain ground deformation data from November 22, 2015, to March 4, 2017. Third, nine static factors, including terrain, geology, hydrology, and human activities, were combined with vertical and line-of-sight (LOS) of InSAR ground deformation to produce a dynamic landslide susceptibility map using the MIV-BP neural network framework.

    Results

    The inclusion of dynamic factors, particularly InSAR ground deformation, significantly improved the accuracy of LSA. When these factors were excluded, prediction accuracy decreased from 0.901 to 0.857. Areas with extremely low and low susceptibility were largely unaffected by Typhoon Megi, while regions with steep or elevated terrain experienced an increase in susceptibility, shifting from medium-high to extremely high susceptibility after the typhoon. The changes in the extremely high susceptibility areas closely aligned with the observed ground deformation from InSAR data.

    Conclusion

    The findings offer valuable insights for geological disaster prevention and mitigation in Songyang County and other regions facing similar extreme weather events in the future.

     

  • loading
  • [1]
    TSOU C Y,FENG Z Y,CHIGIRA M. Catastrophic landslide induced by Typhoon Morakot,Shiaolin,Taiwan[J]. Geomorphology,2011,127(3/4):166-178.
    [2]
    OUYANG C J,ZHAO W,XU Q,et al. Failure mechanisms and characteristics of the 2016 catastrophic rockslide at Su Village,Lishui,China[J]. Landslides,2018,15(7):1391-1400. doi: 10.1007/s10346-018-0985-1
    [3]
    ZHUANG Y,XING A G,JIANG Y H,et al. Typhoon,rainfall and trees jointly cause landslides in coastal regions[J]. Engineering Geology,2022,298:106561. doi: 10.1016/j.enggeo.2022.106561
    [4]
    王佳佳,殷坤龙,肖莉丽. 基于GIS和信息量的滑坡灾害易发性评价:以三峡库区万州区为例[J]. 岩石力学与工程学报,2014,33(4):797-808.

    WANG J J,YIN K L,XIAO L L. Landslide susceptibility assessment based on GIS and weighted information value:A case study of Wanzhou District,Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(4):797-808. (in Chinese with English abstract
    [5]
    HEARN G J,HART A B. Landslide susceptibility mapping:A practitioner's view[J]. Bulletin of Engineering Geology and the Environment,2019,78(8):5811-5826. doi: 10.1007/s10064-019-01506-1
    [6]
    窦杰,向子林,许强,等. 机器学习在滑坡智能防灾减灾中的应用与发展趋势[J]. 地球科学,2023,48(5):1657-1674.

    DOU J,XIANG Z L,XU Q,et al. Application and development trend of machine learning in landslide intelligent disaster prevention and mitigation[J]. Earth Science,2023,48(5):1657-1674. (in Chinese with English abstract
    [7]
    郭衍昊,窦杰,向子林,等. 基于优化负样本采样策略的梯度提升决策树与随机森林的汶川同震滑坡易发性评价[J]. 地质科技通报,2024,43(3):251-265.

    GUO Y H,DOU J,XIANG Z L,et al. Susceptibility evaluation of Wenchuan coseismic landslides by gradient boosting decision tree and random forest based on optimal negative sample sampling strategies[J]. Bulletin of Geological Science and Technology,2024,43(3):251-265. (in Chinese with English abstract
    [8]
    郭子正,殷坤龙,付圣,等. 基于GIS与WOE-BP模型的滑坡易发性评价[J]. 地球科学,2019,44(12):4299-4312.

    GUO Z Z,YIN K L,FU S,et al. Evaluation of landslide susceptibility based on GIS and WOE-BP model[J]. Earth Science,2019,44(12):4299-4312. (in Chinese with English abstract
    [9]
    黄发明,殷坤龙,蒋水华,等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报,2018,37(1):156-167.

    HUANG F M,YIN K L,JIANG S H,et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(1):156-167. (in Chinese with English abstract
    [10]
    GAO B H,HE Y,CHEN X Y,et al. A deep neural network framework for landslide susceptibility mapping by considering time-series rainfall[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2024,17:5946-5969. doi: 10.1109/JSTARS.2024.3370218
    [11]
    DOU J,YUNUS A P,MERGHADI A,et al. Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning[J]. Science of the Total Environment,2020,720:137320. doi: 10.1016/j.scitotenv.2020.137320
    [12]
    SAMEEN M I,PRADHAN B,LEE S. Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment[J]. Catena,2020,186:104249. doi: 10.1016/j.catena.2019.104249
    [13]
    FANG Z C,WANG Y,PENG L,et al. Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping[J]. Computers & Geosciences,2020,139:104470.
    [14]
    贾俊,毛伊敏,孟晓捷,等. 深度随机森林和随机森林算法的滑坡易发性评价对比:以汉中市略阳县为例[J]. 西北地质,2023,56(3):239-249. doi: 10.12401/j.nwg.2023084

    JIA J,MAO Y M,MENG X J,et al. Comparison of landslide susceptibility evaluation by deep random forest and random forest model:A case study of Lueyang County,Hanzhong City[J]. Northwestern Geology,2023,56(3):239-249. (in Chinese with English abstract doi: 10.12401/j.nwg.2023084
    [15]
    YANG Z Q,XU C,SHAO X Y,et al. Landslide susceptibility mapping based on CNN-3D algorithm with attention module embedded[J]. Bulletin of Engineering Geology and the Environment,2022,81(10):412. doi: 10.1007/s10064-022-02889-4
    [16]
    VAN NATIJNE A L,BOGAARD T A,VAN LEIJEN F J,et al. World-wide InSAR sensitivity index for landslide deformation tracking[J]. International Journal of Applied Earth Observation and Geoinformation,2022,111:102829. doi: 10.1016/j.jag.2022.102829
    [17]
    ZHOU C,CAO Y,HU X,et al. Enhanced dynamic landslide hazard mapping using MT-InSAR method in the Three Gorges Reservoir Area[J]. Landslides,2022,19(7):1585-1597. doi: 10.1007/s10346-021-01796-1
    [18]
    CHEN L,MA P F,YU C,et al. Landslide susceptibility assessment in multiple urban slope settings with a landslide inventory augmented by InSAR techniques[J]. Engineering Geology,2023,327:107342. doi: 10.1016/j.enggeo.2023.107342
    [19]
    DAI K R,CHEN C,SHI X L,et al. Dynamic landslides susceptibility evaluation in Baihetan Dam area during extensive impoundment by integrating geological model and InSAR observations[J]. International Journal of Applied Earth Observation and Geoinformation,2023,116:103157. doi: 10.1016/j.jag.2022.103157
    [20]
    高秉海,何毅,张立峰,等. 顾及InSAR形变的CNN滑坡易发性动态评估:以刘家峡水库区域为例[J]. 岩石力学与工程学报,2023,42(2):450-465.

    GAO B H,HE Y,ZHANG L F,et al. Dynamic evaluation of landslide susceptibility by CNN considering InSAR deformation:A case study of Liujiaxia reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(2):450-465. (in Chinese with English abstract
    [21]
    曾韬睿,邬礼扬,金必晶,等. 基于stacking集成策略和SBAS-InSAR的滑坡动态易发性制图[J]. 岩石力学与工程学报,2023,42(9):2266-2282.

    ZENG T R,WU L Y,JIN B J,et al. Landslide dynamic susceptibility mapping based on stacking ensemble strategy and SBAS-InSAR[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(9):2266-2282. (in Chinese with English abstract
    [22]
    WEI Y D,QIU H J,LIU Z J,et al. Refined and dynamic susceptibility assessment of landslides using InSAR and machine learning models[J]. Geoscience Frontiers,2024,15(6):101890. doi: 10.1016/j.gsf.2024.101890
    [23]
    杨寅,包红军,彭涛. 台风“鲇鱼”强降水引发的地质灾害气象风险预警检验与分析[J]. 暴雨灾害,2019,38(3):221-228.

    YANG Y,BAO H J,PENG T. Verification and analysis of meteorological early warning of geological hazards during precipitation of Typhoon “MEGI”[J]. Torrential Rain and Disasters,2019,38(3):221-228. (in Chinese with English abstract
    [24]
    SARA F,SILVIA B,SANDRO M. Landslide inventory updating by means of persistent scatterer interferometry (PSI):The setta basin (Italy) case study[J]. Geomatics,Natural Hazards and Risk,2015,6(5/6/7):419-438.
    [25]
    黄发明,吴敦筱,常志璐,等. 滑坡样本缺失下易发性规律和潜在滑坡识别的易发性:InSAR多源信息法[J]. 岩石力学与工程学报,2025,44(3):584-601. doi: 10.3724/1000-6915.jrme.2024.0449

    HUANG F M,WU D X,CHANG Z L,et al. Landslide susceptibility law under the absence of landslide sample and the susceptibility:InSAR multi-source information method considering the potential landslide identification[J]. Chinese Journal of Rock Mechanics and Engineering,2025,44(3):584-601. (in Chinese with English abstract doi: 10.3724/1000-6915.jrme.2024.0449
    [26]
    HUNGR O,LEROUEIL S,PICARELLI L. The Varnes classification of landslide types,an update[J]. Landslides,2014,11(2):167-194. doi: 10.1007/s10346-013-0436-y
    [27]
    张迎宾,徐佩依,林剑锋,等. 基于BP神经网络的九寨沟地区地震滑坡危险性预测研究[J]. 工程地质学报,2024,32(1):133-145.

    ZHANG Y B,XU P Y,LIN J F,et al. Earthquake-triggered landslide susceptibility prediction in Jiuzhaigou based on BP neural network[J]. Journal of Engineering Geology,2024,32(1):133-145. (in Chinese with English abstract
    [28]
    赵久彬,刘元雪,刘娜,等. 海量监测数据下分布式BP神经网络区域滑坡空间预测方法[J]. 岩土力学,2019,40(7):2866-2872.

    ZHAO J B,LIU Y X,LIU N,et al. Spatial prediction method of regional landslide based on distributed BP neural network algorithm under massive monitoring data[J]. Rock and Soil Mechanics,2019,40(7):2866-2872. (in Chinese with English abstract
    [29]
    黄发明,曾诗怡,姚池,等. 滑坡易发性预测建模的不确定性:不同“非滑坡样本”选择方式的影响[J]. 工程科学与技术,2024,56(1):169-182.

    HUANG F M,ZENG S Y,YAO C,et al. Uncertainties of landslide susceptibility prediction modeling:Influence of different selection methods of "non-landslide samples"[J]. Advanced Engineering Sciences,2024,56(1):169-182. (in Chinese with English abstract
    [30]
    KE C Y,HE S,QIN Y G. Comparison of natural breaks method and frequency ratio dividing attribute intervals for landslide susceptibility mapping[J]. Bulletin of Engineering Geology and the Environment,2023,82(10):384. doi: 10.1007/s10064-023-03392-0
    [31]
    缪海波,王功辉. 风振影响下乔木坡地暴雨型浅层滑坡演化机制[J]. 地质科技通报,2022,41(2):60-70.

    MIAO H B,WANG G H. Evolution mechanism of rainstorm-induced shallow landslides on slopes covered by arbors considering the influence of wind-induced vibration[J]. Bulletin of Geological Science and Technology,2022,41(2):60-70. (in Chinese with English abstract
    [32]
    CUI Y L,YANG L,XU C,et al. Spatial distribution of shallow landslides caused by Typhoon Lekima in 2019 in Zhejiang Province,China[J]. Journal of Mountain Science,2024,21(5):1564-1580. doi: 10.1007/s11629-023-8377-y
    [33]
    黄发明,胡松雁,闫学涯,等. 基于机器学习的滑坡易发性预测建模及其主控因子识别[J]. 地质科技通报,2022,41(2):79-90.

    HUANG F M,HU S Y,YAN X Y,et al. Landslide susceptibility prediction and identification of its main environmental factors based on machine learning models[J]. Bulletin of Geological Science and Technology,2022,41(2):79-90. (in Chinese with English abstract
    [34]
    CHEN X L,LIU C G,CHANG Z F,et al. The relationship between the slope angle and the landslide size derived from limit equilibrium simulations[J]. Geomorphology,2016,253:547-550. doi: 10.1016/j.geomorph.2015.01.036
    [35]
    姜建伟,赵法锁,祝俊华,等. 陕西省吴起县斜坡几何形态与地质灾害相关性研究[J]. 灾害学,2018,33(2):188-192. doi: 10.3969/j.issn.1000-811X.2018.02.033

    JIANG J W,ZHAO F S,ZHU J H,et al. Study on the correlation between slope geometrical morphology and geological disasters in Wuqi County of Shaanxi Province[J]. Journal of Catastrophology,2018,33(2):188-192. (in Chinese with English abstract doi: 10.3969/j.issn.1000-811X.2018.02.033
    [36]
    CAPITANI M,RIBOLINI A,BINI M. The slope aspect:A predisposing factor for landsliding?[J]. Comptes Rendus Geoscience,2013,345(11/12):427-438.
    [37]
    WANG F W,CHEN Y,PENG X L,et al. The fault-controlled Chengtian landslide triggered by rainfall on 20 May 2021 in Songyang County,Zhejiang Province,China[J]. Landslides,2022,19(7):1751-1765. doi: 10.1007/s10346-022-01891-x
    [38]
    FU Z J,WANG F W,DOU J,et al. Enhanced absence sampling technique for data-driven landslide susceptibility mapping:A case study in Songyang County,China[J]. Remote Sensing,2023,15(13):3345. doi: 10.3390/rs15133345
    [39]
    ROHAN T,SHELEF E,MIRUS B,et al. Prolonged influence of urbanization on landslide susceptibility[J]. Landslides,2023,20(7):1433-1447. doi: 10.1007/s10346-023-02050-6
    [40]
    LI G R,LEI Y L,YAO H J,et al. The influence of land urbanization on landslides:An empirical estimation based on Chinese provincial panel data[J]. Science of the Total Environment,2017,595:681-690. doi: 10.1016/j.scitotenv.2017.03.258
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(41) PDF Downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return