| Citation: | WANG Rong,YANG Yijun,TIAN Shuhang,et al. Organic matter as an indicator of groundwater calcium enrichment in paleo-channel area along middle reaches of Yangtze River[J]. Bulletin of Geological Science and Technology,2026,45(2):1-9 doi: 10.19509/j.cnki.dzkq.tb20240491 |
As an important source of drinking water, abnormal calcium (Ca) concentrations in groundwater could endanger human growth and lead to health risks. Previous research has primarily focused on how inorganic carbonate equilibrium processes involving atmospheric CO2 regulate groundwater Ca cycling. However, the important role of the organic carbon pool has been overlooked, and the microscopic mechanisms underlying the interactions between different components of organic matter (OM) and Ca remain elusive.
This study took the paleo-channel area along the middle reaches of the Yangtze River as the study area. Groundwater samples were analyzed using hydrochemical analysis, principal component analysis, parallel factor analysis (PARAFAC) of fluorescence excitation-emission matrix (EEM) spectroscopy, and fluorescence excitation-emission matrix regional integration.
The results demonstrated that groundwater Ca concentrations exhibited significant spatial heterogeneity, ranging from 111 to 213 mg/L, mainly concentrated in the meanders and oxbow lakes of the paleo-channel region. Greater OM content was observed in the groundwater with elevated Ca concentration, and the two exhibited similar spatial distribution patterns. In the study area, the EEM-PARAFAC model identified three major components in groundwater, including protein-like components (C1), microbial and terrestrial humic components (C2 and C3).
With the increase of Ca concentration in groundwater, the content of protein-like components decreased while that of the humic-like components increased. Notably, the abundant organic matter buried in the paleo-channel area provides a strong reducing environment that favors the degradation of protein-like organic matter. This process promotes the dissolution of Ca-bearing minerals, which contributes to the groundwater Ca enrichment. This research investigated the heterogeneous spatial distribution and occurrence environments of Ca in groundwater, characterized differences in organic matter composition among groundwater with different Ca concentrations, and revealed the mechanisms by which organic matter influenced the migration and enrichment of Ca in groundwater.
| [1] |
KUANG X X, LIU J G, SCANLON B R, et al. The changing nature of groundwater in the global water cycle[J]. Science, 2024, 383(6686): eadf0630. doi: 10.1126/science.adf0630
|
| [2] |
WANG Y X, YUAN S H, SHI J B, et al. Groundwater quality and health: Making the invisible visible[J]. Environmental Science & Technology, 2023, 57(13): 5125-5136.
|
| [3] |
XIE X J, SHI J B, PI K F, et al. Groundwater quality and public health[J]. Annual Review of Environment and Resources, 2023, 48: 395-418. doi: 10.1146/annurev-environ-112321-114701
|
| [4] |
MISSTEAR B, VARGAS C R, LAPWORTH D, et al. A global perspective on assessing groundwater quality[J]. Hydrogeology Journal, 2023, 31(1): 11-14. doi: 10.1007/s10040-022-02461-0
|
| [5] |
WANG Y X, LI J X, MA T, et al. Genesis of geogenic contaminated groundwater: As, F and I[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(24): 2895-2933.
|
| [6] |
YANG Y J, DENG Y M, WANG Y X. Major geogenic factors controlling geographical clustering of urolithiasis in China[J]. Science of the Total Environment, 2016, 571: 1164-1171. doi: 10.1016/j.scitotenv.2016.07.117
|
| [7] |
CORMICK G, BELIZÁN J M. Calcium intake and health[J]. Nutrients, 2019, 11(7): 1606. doi: 10.3390/nu11071606
|
| [8] |
WANG Y X, WANG Q R, DENG Y M, et al. Assessment of the impact of geogenic and climatic factors on global risk of urinary stone disease[J]. Science of the Total Environment, 2020, 721: 137769. doi: 10.1016/j.scitotenv.2020.137769
|
| [9] |
刘再华. 表生和内生钙华的气候环境指代意义研究进展[J]. 科学通报, 2014, 59(23): 2229-2239. doi: 10.1360/N972013-00037
LIU Z H. Research progress in paleoclimatic interpretations of tufa and travertine[J]. Chinese Science Bulletin, 2014, 59(23): 2229-2239. (in Chinese with English abstract doi: 10.1360/N972013-00037
|
| [10] |
LI J X, DEPAOLO D J, WANG Y X, et al. Calcium isotope fractionation in a silicate dominated Cenozoic aquifer system[J]. Journal of Hydrology, 2018, 559: 523-533. doi: 10.1016/j.jhydrol.2018.02.039
|
| [11] |
LIU Z H, DREYBRODT W, WANG H J. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews, 2010, 99(3/4): 162-172. doi: 10.1016/j.earscirev.2010.03.001
|
| [12] |
MENG L Z, XUE J Y, ZHAO C, et al. N-containing dissolved organic matter promotes dissolved inorganic carbon supersaturation in the Yangtze River, China[J]. Water Research, 2023, 247: 120808. doi: 10.1016/j.watres.2023.120808
|
| [13] |
LERMAN A, MACKENZIE F T. CO2 air-sea exchange due to calcium carbonate and organic matter storage, and its implications for the global carbon cycle[J]. Aquatic Geochemistry, 2005, 11(4): 345-390. doi: 10.1007/s10498-005-8620-x
|
| [14] |
陈崇瑛, 刘再华. 喀斯特地表水生生态系统生物碳泵的碳汇和水环境改善效应[J]. 科学通报, 2017, 62(30): 3440-3450. doi: 10.1360/N972017-00298
CHEN C Y, LIU Z H. The role of biological carbon pump in the carbon sink and water environment improvement in karst surface aquatic ecosystems[J]. Chinese Science Bulletin, 2017, 62(30): 3440-3450. (in Chinese with English abstract doi: 10.1360/N972017-00298
|
| [15] |
WUDDIVIRA M N, CAMPS-ROACH G. Effects of organic matter and calcium on soil structural stability[J]. European Journal of Soil Science, 2007, 58(3): 722-727. doi: 10.1111/j.1365-2389.2006.00861.x
|
| [16] |
KLOSTER N, BRIGANTE M, ZANINI G, et al. Aggregation kinetics of humic acids in the presence of calcium ions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 427: 76-82. doi: 10.1016/j.colsurfa.2013.03.030
|
| [17] |
WENG L P, KOOPAL L K, HIEMSTRA T, et al. Interactions of calcium and fulvic acid at the goethite-water interface[J]. Geochimica et Cosmochimica Acta, 2005, 69(2): 325-339. doi: 10.1016/j.gca.2004.07.002
|
| [18] |
ROWLEY M C, GRAND S, VERRECCHIA É P. Calcium-mediated stabilisation of soil organic carbon[J]. Biogeochemistry, 2018, 137(1): 27-49. doi: 10.1007/s10533-017-0410-1
|
| [19] |
RUIZ F, BARRETO M S C, RUMPEL C, et al. Adsorption and thermal stability of dissolved organic matter on Ca- and Mg-exchanged montmorillonite: Implications for persistence in soils and sediments[J]. Chemical Geology, 2024, 643: 121813. doi: 10.1016/j.chemgeo.2023.121813
|
| [20] |
FANTLE M S, TIPPER E T. Calcium isotopes in the global biogeochemical Ca cycle: Implications for development of a Ca isotope proxy[J]. Earth-Science Reviews, 2014, 129: 148-177. doi: 10.1016/j.earscirev.2013.10.004
|
| [21] |
贾铁飞, 王峰, 袁世飞. 长江中游沿江牛轭湖沉积及其环境意义: 以长江荆江段天鹅洲、中洲子为例[J]. 地理研究, 2015, 34(5): 861-871.
JIA T F, WANG F, YUAN S F. Oxbow lake sedimentary characteristics and their environmental significance in Tianezhou and Zhongzhouzi lakes in the middle Yangtze River[J]. Geographical Research, 2015, 34(5): 861-871. (in Chinese with English abstract
|
| [22] |
YANG Y J, DENG Y M, XIE X J, et al. Multiple isotope approach elucidates the calcium enrichment of groundwater in the central Yangtze River Basin[J]. Applied Geochemistry, 2024, 166: 105979. doi: 10.1016/j.apgeochem.2024.105979
|
| [23] |
喻静, 裴洪军, 汪丙国. 江汉平原双层结构包气带渗透系数不确定性对氨氮运移的影响[J]. 地质科技通报, 2025, 44(6): 249-258.
YU J, PEI H J, WANG B G. Influence of saturated hydraulic conductivity uncertainty on ammonium-nitrogen transport in the double-layer vadose zone of the Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2025, 44(6): 249-258. (in Chinese with English abstract
|
| [24] |
LIU Z H, LI Q, SUN H L, et al. Seasonal, diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China: Soil CO2 and dilution effects[J]. Journal of Hydrology, 2007, 337(1/2): 207-223. doi: 10.1016/j.jhydrol.2007.01.034
|
| [25] |
韩鹏, 甘义群, 杜尧, 等. 洪湖地下水排泄及其携带营养盐通量量化的方法学研究[J]. 地质科技通报, 2025, 44(1): 285-297. doi: 10.19509/j.cnki.dzkq.tb20230463
HAN P, GAN Y Q, DU Y, et al. A methodological study on the quantification of lacustrine groundwater discharge and nutrient fluxes to Honghu Lake[J]. Bulletin of Geological Science and Technology, 2025, 44(1): 285-297. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20230463
|
| [26] |
罗义鹏, 邓娅敏, 杜尧, 等. 长江中游故道区高碘地下水分布与形成机理[J]. 地球科学, 2022, 47(2): 662-673.
LUO Y P, DENG Y M, DU Y, et al. Occurrence and formation of high iodine groundwater inoxbows of the middle reach of the Yangtze River[J]. Earth Science, 2022, 47(2): 662-673. (in Chinese with English abstract
|
| [27] |
DU Y, DENG Y M, MA T, et al. Hydrogeochemical evidences for targeting sources of safe groundwater supply in arsenic-affected multi-level aquifer systems[J]. Science of the Total Environment, 2018, 645: 1159-1171. doi: 10.1016/j.scitotenv.2018.07.173
|
| [28] |
高杰, 郭静, 蔡爱民, 等. 长江中游河湖−地下水交互带地下水中氮素的时空分布特征及控制因素[J]. 地质科技通报, 2025, 44(5): 247-256. doi: 10.19509/j.cnki.dzkq.tb20240595
GAO J, GUO J, CAI A M, et al. Spatial-temporal distribution characteristics and driving factors of nitrogen in groundwater of river-lake-groundwater interaction zone along middle reaches of the Yangtze River[J]. Bulletin of Geological Science and Technology, 2025, 44(5): 247-256. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20240595
|
| [29] |
MAIE N, PARISH K J, WATANABE A, et al. Chemical characteristics of dissolved organic nitrogen in an oligotrophic subtropical coastal ecosystem[J]. Geochimica et Cosmochimica Acta, 2006, 70(17): 4491-4506. doi: 10.1016/j.gca.2006.06.1554
|
| [30] |
HUGUET A, VACHER L, RELEXANS S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry, 2009, 40(6): 706-719. doi: 10.1016/j.orggeochem.2009.03.002
|
| [31] |
OHNO T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter[J]. Environmental Science & Technology, 2002, 36(4): 742-746. doi: 10.1021/es0155276
|
| [32] |
CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. doi: 10.1021/es034354c
|
| [33] |
王帅, 任宇, 郭红, 等. 河南黄河改道区浅层地下水化学特征与主控污染源解析[J]. 环境科学, 2024, 45(2): 792-801. doi: 10.13227/j.hjkx.202303263
WANG S, REN Y, GUO H, et al. Chemical characteristics of shallow groundwater in the Yellow River diversion area of Henan Province and identification of main control pollution sources[J]. Environmental Science, 2024, 45(2): 792-801. (in Chinese with English abstract doi: 10.13227/j.hjkx.202303263
|
| [34] |
YANG Y J, YUAN X F, DENG Y M, et al. Seasonal dynamics of dissolved organic matter in high arsenic shallow groundwater systems[J]. Journal of Hydrology, 2020, 589: 125120. doi: 10.1016/j.jhydrol.2020.125120
|
| [35] |
KULKARNI H V, MLADENOV N, JOHANNESSON K H, et al. Contrasting dissolved organic matter quality in groundwater in Holocene and Pleistocene aquifers and implications for influencing arsenic mobility[J]. Applied Geochemistry, 2017, 77: 194-205. doi: 10.1016/j.apgeochem.2016.06.002
|
| [36] |
CHEN J, LEBOEUF E J, DAI S, et al. Fluorescence spectroscopic studies of natural organic matter fractions[J]. Chemosphere, 2003, 50(5): 639-647. doi: 10.1016/S0045-6535(02)00616-1
|
| [37] |
GUÉGUEN C, BURNS D C, MCDONALD A, et al. Structural and optical characterization of dissolved organic matter from the lower Athabasca River, Canada[J]. Chemosphere, 2012, 87(8): 932-937. doi: 10.1016/j.chemosphere.2012.01.047
|
| [38] |
CARSTEA E M, BAKER A, BIEROZA M, et al. Characterisation of dissolved organic matter fluorescence properties by PARAFAC analysis and thermal quenching[J]. Water Research, 2014, 61: 152-161. doi: 10.1016/j.watres.2014.05.013
|
| [39] |
WEI Z M, WANG X Q, ZHAO X Y, et al. Fluorescence characteristics of molecular weight fractions of dissolved organic matter derived from composts[J]. International Biodeterioration & Biodegradation, 2016, 113: 187-194. doi: 10.1016/j.ibiod.2016.03.010
|
| [40] |
MURPHY K R, STEDMON C A, WAITE T D, et al. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy[J]. Marine Chemistry, 2008, 108(1/2): 40-58. doi: 10.1016/j.marchem.2007.10.003
|
| [41] |
SUN Q Y, WANG C, WANG P F, et al. Absorption and fluorescence characteristics of chromophoric dissolved organic matter in the Yangtze estuary[J]. Environmental Science and Pollution Research, 2014, 21(5): 3460-3473. doi: 10.1007/s11356-013-2287-4
|
| [42] |
WANG X W, LIU Z Q, XIONG K N, et al. Soil organic carbon distribution and its response to soil erosion based on EEM-PARAFAC and stable carbon isotope, a field study in the rocky desertification control of South China karst[J]. International Journal of Environmental Research and Public Health, 2022, 19(6): 3210. doi: 10.3390/ijerph19063210
|
| [43] |
QUANG V L, KIM H C, MAQBOOL T, et al. Fate and fouling characteristics of fluorescent dissolved organic matter in ultrafiltration of terrestrial humic substances[J]. Chemosphere, 2016, 165: 126-133. doi: 10.1016/j.chemosphere.2016.09.029
|
| [44] |
CHEN M L, PRICE R M, YAMASHITA Y, et al. Comparative study of dissolved organic matter from groundwater and surface water in the Florida coastal everglades using multi-dimensional spectrofluorometry combined with multivariate statistics[J]. Applied Geochemistry, 2010, 25(6): 872-880. doi: 10.1016/j.apgeochem.2010.03.005
|
| [45] |
AUDETTE Y, SMITH D S, PARSONS C T, et al. Phosphorus binding to soil organic matter via ternary complexes with calcium[J]. Chemosphere, 2020, 260: 127624. doi: 10.1016/j.chemosphere.2020.127624
|
| [46] |
XUE S G, ZHANG Y F, JIANG J, et al. Effect of calcium ions on the interaction of alkaline minerals with dissolved organic matter: Implications for organic carbon sequestration in bauxite residue[J]. Plant and Soil, 2024, 497(1): 79-91.
|
| [47] |
吕书丛, 焦茹媛, 王芳, 等. 长江下游河−湖系统溶解性有机碳化学组成、变化特征及其与二氧化碳分压的关系[J]. 环境科学学报, 2018, 38(5): 2034-2044. doi: 10.13671/j.hjkxxb.2018.0001
LV S C, JIAO R Y, WANG F, et al. Characteristics and chemical compositions of DOC linking to the partial pressure of carbon dioxide in the lake-river systems of lower Changjiang River basin[J]. Acta Scientiae Circumstantiae, 2018, 38(5): 2034-2044. (in Chinese with English abstract doi: 10.13671/j.hjkxxb.2018.0001
|