Citation: | LIAO Jin,JIN Aohan,LI Cai,et al. Suitability and potential evaluation of geological storage of carbon dioxide in saline aquifer of Ying-Qiong Basin[J]. Bulletin of Geological Science and Technology,2025,44(3):1-9 doi: 10.19509/j.cnki.dzkq.tb20240366 |
Excessive carbon dioxide (CO2) emissions have caused global climate variability, leading to a series of environmental problems. As a key technology to reduce CO2 emissions, carbon capture, utilization and storage (CCUS) plays an important role in relieving large-scale CO2 emission reductions, and the application of CO2 storage projects for the saline aquifer in offshore China has a broad application prospect and great technical and economic potential.
To address the problem of unclear understanding of the favorable areas and storage potential of CO2 in the saline aquifers in the Ying-Qiong Basin, the suitability evaluation of geological storage of CO2 is carried out by calculating the weights of the indicator components and the suitability score based on the geological characteristics of the Ying-Qiong Basin. In addition, the CO2 storage potential of the saline aquifer in the Ying-Qiong Basin is preliminarily evaluated by combining the effective CO2 storage coefficients calculated by numerical simulation method and different storage potential calculation methods.
Results show that the storage capacity obtained from EC method is less than that determined by the USDOE and CSLF methods. Since the CSLF method considers the storage mechanisms such as geological structure storage, residual gas storage and dissolution storage, the results seem more reasonable.
In summary, the CO2 storage potentials of the saline aquifer in the Yinggehai Basin and Qiongdongnan Basin are 7.96×106 and 4.40×106 million tons, respectively, and the total CO2 storage potential in the saline aquifer in the Ying-Qiong Basin is 1.24×107 million tons, which further verifies the great potential of the industrial-scale pilot and demonstration projects of CO2 storage in the saline aquifer of the Ying-Qiong Basin and provides a good opportunity for the next step of carrying out the CO2 storage project in the saline aquifer of the Ying-Qiong Basin.
[1] |
李阳,黄文欢,金勇,等. 双碳愿景下中国石化不同油藏类型CO2驱提高采收率技术发展与应用[J]. 油气藏评价与开发,2021,11(6):793-804.
LI Y,HUANG W H,JIN Y,et al. Different reservoir types of CO2 flooding in Sinopec EOR technology development and application under “dual carbon” vision[J]. Petroleum Reservoir Evaluation and Development,2021,11(6):793-804. (in Chinese with English abstract
|
[2] |
张海龙. CO2混相驱提高石油采收率实践与认识[J]. 大庆石油地质与开发,2020,39(2):114-119.
ZHANG H L. Practice and understanding of enhancing the oil recovery by CO2 miscible flooding[J]. Petroleum Geology & Oilfield Development in Daqing,2020,39(2):114-119. (in Chinese with English abstract
|
[3] |
尹书郭,杨国栋,冯涛,等. 页岩储层物性参数对CO2不同封存机制及封存量的影响[J]. 高校地质学报,2023,29(1):37-46.
YIN S G,YANG G D,FENG T,et al. Effects of physical parameters of shale on CO2 storage capacity with different mechanisms[J]. Geological Journal of China Universities,2023,29(1):37-46. (in Chinese with English abstract
|
[4] |
杨红,赵习森,康宇龙,等. 鄂尔多斯盆地CO2地质封存适宜性与潜力评价[J]. 气候变化研究进展,2019,15(1):95-102.
YANG H,ZHAO X S,KANG Y L,et al. Evaluation on geological sequestration suitability and potential of CO2 in Ordos Basin[J]. Climate Change Research,2019,15(1):95-102. (in Chinese with English abstract
|
[5] |
赵晓亮,廖新维,王万福,等. 二氧化碳埋存潜力评价模型与关键参数的确定[J]. 特种油气藏,2013,20(6):72-74. doi: 10.3969/j.issn.1006-6535.2013.06.018
ZHAO X L,LIAO X W,WANG W F,et al. Evaluative model of CO2 geological sequestration and determination of key parameters[J]. Special Oil & Gas Reservoirs,2013,20(6):72-74. (in Chinese with English abstract doi: 10.3969/j.issn.1006-6535.2013.06.018
|
[6] |
任相坤,崔永君,步学朋,等. 鄂尔多斯盆地CO2地质封存潜力分析[J]. 中国能源,2010,32(1):29-32.
REN X K,CUI Y J,BU X P,et al. Analysis on CO2 storage potentiality in Ordos Basin[J]. Energy of China,2010,32(1):29-32. (in Chinese with English abstract
|
[7] |
米立军. 全球海上CO2封存现状及中国近海机遇与挑战[J]. 中国海上油气,2023,35(1):123-135.
MI L J. Current status of global CO2 ocean sequestration and opportunities and challenges in China offshore areas[J]. China Offshore Oil and Gas,2023,35(1):123-135. (in Chinese with English abstract
|
[8] |
赵金洲,郑建超,任岚,等. 海洋CO2地质封存研究进展与发展趋势[J]. 大庆石油地质与开发,2024,43(1):1-13.
ZHAO J Z,ZHENG J C,REN L,et al. Research progress and development trend of marine CO2 geological storage[J]. Petroleum Geology & Oilfield Development in Daqing,2024,43(1):1-13. (in Chinese with English abstract
|
[9] |
夏翠梅,王楠,刘景昱,等. “碳中和” 目标下海洋黑碳的源汇过程及其意义[J]. 地质科技通报,2024,43(2):318-329.
XIA C M,WANG N,LIU J Y,et al. Source-sink processes of marine black carbon in the context of “carbon neutrality”[J]. Bulletin of Geological Science and Technology,2024,43(2):318-329. (in Chinese with English abstract
|
[10] |
GUO J Q,WEN D G,ZHANG S Q,et al. Potential and suitability evaluation of CO2 geological storage in major sedimentary basins of China,and the demonstration project in Ordos Basin[J]. Acta Geologica Sinica-English Edition,2015,89(4):1319-1332. doi: 10.1111/1755-6724.12531
|
[11] |
贺陆胜,万建华,张建强,等. CO2地质封存研究与中国CO2地质封存潜力评述[J]. 甘肃地质,2024,33(1):59-71.
HE L S,WAN J H,ZHANG J Q,et al. CO2 geological sequestration and evaluation of CO2 geological sequestration potential in China[J]. Gansu Geology,2024,33(1):59-71. (in Chinese with English abstract
|
[12] |
ZHANG K,LAU H C,CHEN Z X. Extension of CO2 storage life in the Sleipner CCS project by reservoir pressure management[J]. Journal of Natural Gas Science and Engineering,2022,108:104814. doi: 10.1016/j.jngse.2022.104814
|
[13] |
CAO W Z,SHI J Q,DURUCAN S,et al. Evaluation of shear slip stress transfer mechanism for induced microseismicity at in Salah CO2 storage site[J]. International Journal of Greenhouse Gas Control,2021,107:103302. doi: 10.1016/j.ijggc.2021.103302
|
[14] |
王永胜. CO2咸水层封存砂岩储层孔隙尺度变化规律及可注性研究:基于神华CCS示范工程[D]. 武汉:中国地质大学(武汉),2021.
WANG Y S. Study on the variation of pore scale and injectability of CO2 saltwater sequestered sandstone reservoir:Based on Shenhua CCS Demonstration Project[D]. Wuhan:China University of Geosciences (Wuhan),2021. (in Chinese with English abstract
|
[15] |
闫华敏,李磊,李林涛,等. 基于层次分析法和模糊评价法的中国近海盆地CO2封存适宜性评价[J]. 海洋地质前沿,2024,40(1):79-93.
YAN H M,LI L,LI L T,et al. Suitability assessment on CO2 storage in offshore basins of China based on AHP and fuzzy comprehensive evaluation[J]. Marine Geology Frontiers,2024,40(1):79-93. (in Chinese with English abstract
|
[16] |
张振冬,杨正先,张永华,等. CO2捕集与封存研究进展及其在我国的发展前景[J]. 海洋环境科学,2012,31(3):456-459.
ZHANG Z D,YANG Z X,ZHANG Y H,et al. Study progress on CO2 capture and storage and development prospect in China[J]. Marine Environmental Science,2012,31(3):456-459. (in Chinese with English abstract
|
[17] |
李春峰,赵学婷,段威,等. 中国海域盆地CO2地质封存选址方案与构造力学分析[J]. 力学学报,2023,55(3):719-731.
LI C F,ZHAO X T,DUAN W,et al. Strategic and geodynamic analysis of geo-sequestration of CO2 in China offshore sedimentary basins[J]. Chinese Journal of Theoretical and Applied Mechanics,2023,55(3):719-731. (in Chinese with English abstract
|
[18] |
熊鹏飞,方小宇,乐文喜,等. 北部湾盆地涠西南凹陷咸水层CO2地质封存储盖优选及潜力评估[J]. 煤炭学报,2024,49(5):2405-2413.
XIONG P F,FANG X Y,LE W X,et al. Reservoir-cap combination optimization and potential evaluation of CO2 geological storage in saline aquifer,in Wenxinan Sag of Beibu Gulf Basin[J]. Journal of China coal society,2024,49(5):2405-2413. (in Chinese with English abstract
|
[19] |
QIN J Z,ZHONG Q H,TANG Y,et al. CO2 storage potential assessment of offshore saline aquifers in China[J]. Fuel,2023,341:127681. doi: 10.1016/j.fuel.2023.127681
|
[20] |
谢玉洪,李绪深,徐新德,等. 莺−琼盆地高温高压领域天然气成藏与勘探大突破[J]. 中国石油勘探,2016,21(4):19-29.
XIE YUHONG,LI XUSHEN,XU XINDE,et al. Gas accumulation and great exploration breakthroughs in HTHP formations within Yinggehai-Qiongdongnan basins[J],China petroleum exploration,2016,21(4):19-29. (in Chinese with English abstract
|
[21] |
罗盼,高圆圆,王后金,等. 南海西南次海盆V型尖端地壳岩石圈最终裂解的特征及过程[J]. 地质科技通报,2023,42(2):234-246.
LUO PAN,GAO YUANYUAN,WANG HOUJIN,et al. Characteristics and process of the final breakup of the crustal lithosphere at the V-shaped tip of the Southwest Subbasin in South China Sea[J]. Bulletin of Geological Science and Technology,2023,42(2):234-246. (in Chinese with English abstract
|
[22] |
王振峰,裴健翔,郝德峰,等. 莺−琼盆地中新统大型重力流储集体发育条件、沉积特征及天然气勘探有利方向[J]. 中国海上油气,2015,27(4):13-21.
WANG Z F,PEI J X,HAO D F,et al. Development conditions,sedimentary characteristics of Miocene large gravity flow reservoirs and the favorable gas exploration directions in Ying-Qiong basins[J]. China Offshore Oil and Gas,2015,27(4):13-21. (in Chinese with English abstract
|
[23] |
周杰,胡林,胡高伟,等. 莺歌海盆地莺东斜坡带南段中深层断裂特征及控藏作用[J]. 地球科学,2023,48(8):3021-30.
ZHOU J,HU L,HU G W,et al. Characteristics of middle deep faults in the southern segment of the eastern belt of Yinggehai Basin and their controlling effect on natural gas accumulation[J]. Earth Science,2023,48(8):3021-3030. (in Chinese with English abstract
|
[24] |
张旭友,范彩伟,郭小文,等. 莺歌海盆地中央底辟带乐东区莺歌海组超压成因及相对贡献定量化评价[J]. 地球科学,2024,49(10):3547-3558.
ZHANG X Y,FAN C W,GUO X W,et al. Overpressure mechanisms and quantitative evaluation of the relative contribution for Yinggehai Formation in Ledong area of the Central Diapir Zone,Yinggehai Basin[J]. Earth Science,2024,49(10):3547-3558. (in Chinese with English abstract
|
[25] |
ZHANG C M,ZHOU D,LI P C,et al. CO2 storage potential of the Qiongdongnan Basin,northwestern South China Sea[J]. Greenhouse Gases:Science and Technology,2014,4(6):691-706. doi: 10.1002/ghg.1430
|
[26] |
谢玉洪,刘平,黄志龙. 莺歌海盆地高温超压天然气成藏地质条件及成藏过程[J]. 天然气工业,2012,32(4):19-23.
XIE Y H,LIU P,HUANG Z L. Geological conditions and pooling process of high-temperature and overpressure natural gas reservoirs in the Yinggehai Basin[J]. Natural Gas Industry,2012,32(4):19-23. (in Chinese with English abstract
|
[27] |
谢玉洪,李绪深,童传新,等. 莺琼盆地高温超压天然气成藏理论与勘探实践[M]. 北京:石油工业出版社,2015.
XIE Y H,LI X S,TONG C X,et al. Theory and exploration practice of high temperature overpressure gas accumulation in Ying-Qiong Basin[M]. Beijing:Petroleum Industry Press,2015. (in Chinese).
|
[28] |
霍传林. 我国近海二氧化碳海底封存潜力评估和封存区域研究[D]. 辽宁大连:大连海事大学,2014.
HUO CHUANLIN. Study on the potential evaluation and the storage areas of the carbon dioxide seabed storage in offshore China[D]. Dalian Liaoning:Dalian Maritime University,2014. (in Chinese with English abstract
|
[29] |
祁生文,郑博文,路伟,等. 二氧化碳地质封存选址指标体系及适宜性评价研究[J]. 第四纪研究,2023,43(2):523-550. doi: 10.11928/j.issn.1001-7410.2023.02.19
QI S W,ZHENG B W,LU W,et al. Investigation of indexes system and suitability evaluation for carbon dioxide geological storage site[J]. Quaternary Sciences,2023,43(2):523-550. (in Chinese with English abstract doi: 10.11928/j.issn.1001-7410.2023.02.19
|
[30] |
文冬光,郭建强,张森琦,等. 中国二氧化碳地质储存研究进展[J]. 中国地质,2014,41(5):1716-1723. doi: 10.12029/gc20140525
WEN D G,GUO J Q,ZHANG S Q,et al. The progress in the research on carbon dioxide geological storage in China[J]. Geology in China,2014,41(5):1716-1723. (in Chinese with English abstract doi: 10.12029/gc20140525
|
[31] |
肖贝,陈磊,杨皝,等. 准噶尔盆地深部咸水层CO2地质封存适宜性及潜力评价[J]. 大庆石油地质与开发,2024,43(6):120-127.
XIAO B,CHEN L,YANG H,et al. Suitability and potential evaluation of CO2 geological storage in deep saline aquifers of Junger Basin[J]. Petroleum Geology & Oilfield Development in Daqing,2024,43(6):120-127. (in Chinese with English abstract
|
[32] |
KOIDE H,TAKAHASHI M,TSUKAMOTO H,et al. Self-trapping mechanisms of carbon dioxide in the aquifer disposal[J]. Energy Conversion and Management,1995,36(6/7/8/9):505-508.
|
[33] |
U. S. Department of Energy Carbon sequestration atlas of the United States and Canada[M]. Washing to United States:U. S. Department of Energy,2008.
|
[34] |
BACHU S,BONIJOLY D,BRADSHAW J,et al. CO2 storage capacity estimation:Methodology and gaps[J]. International Journal of Greenhouse Gas Control,2007,1(4):430-443. doi: 10.1016/S1750-5836(07)00086-2
|
[35] |
WANG Y,ZHANG K N,WU N Y. Numerical investigation of the storage efficiency factor for CO2 geological sequestration in saline formations[J]. Energy Procedia,2013,37:5267-5274. doi: 10.1016/j.egypro.2013.06.443
|
[36] |
GUO B Y,WEI N,SONG J Z,et al. Prediction of the maximum allowable bottom hole pressure in CO2 injection wells[J]. Journal of Petroleum Science and Engineering,2017,156:575-581. doi: 10.1016/j.petrol.2017.06.033
|