| Citation: | DANG Jingxuan,TIAN Tao,LI Chuang,et al. Exploration of groundwater table spatial estimation in Jiangsu Province based on machine learning and multi-source data fusion[J]. Bulletin of Geological Science and Technology,2026,45(2):1-11 doi: 10.19509/j.cnki.dzkq.tb20240228 |
Characterizing the spatial distribution of the regional groundwater table is critical for effective groundwater management and pollution control. However, the limited number and uneven distribution of observation wells in many regions, including Jiangsu Province, China, make it difficult for traditional interpolation or physically based numerical models to provide reliable predictions. Interpolation methods such as Kriging depend heavily on well coverage, which restricts their applicability in data-scarce areas, while numerical models require large amounts of hydrogeological parameters and boundary conditions that are often unavailable in practice.
To address these limitations, this study develops a machine learning–based framework that integrates multi-source data, including elevation, vegetation coverage, rainfall, distance from surface water, land surface temperature, and soil moisture. A dataset of 953 groundwater observations collected during the dry season, complemented by surface water levels and published measurements, was compiled and standardized. A deep neural network (DNN) was trained using 80% of the data, validated on 10%, and tested on the remaining 10%.
The model achieved a determination coefficient (
Overall, the machine learning framework developed in this study provides an efficient and scalable tool for estimating groundwater table distributions in data-limited regions. By integrating diverse environmental factors, the approach improves predictive accuracy, enhances spatial resolution of groundwater flow mapping, and offers insights into governing controls. The results highlight the potential of combining big data and artificial intelligence methods to support groundwater monitoring optimization, regional environmental impact assessments, and sustainable water resource management.
| [1] |
BUCHANAN S, TRIANTAFILIS J. Mapping water table depth using geophysical and environmental variables[J]. Ground Water, 2009, 47(1): 80-96. doi: 10.1111/j.1745-6584.2008.00490.x
|
| [2] |
BUECHLER S, MEKALA G D. Local responses to water resource degradation in India: Groundwater farmer innovations and the reversal of knowledge flows[J]. The Journal of Environment & Development, 2005, 14(4): 410-438. doi: 10.1177/1070496505281840
|
| [3] |
AO C, ZENG W Z, WU L F, et al. Time-delayed machine learning models for estimating groundwater depth in the Hetao Irrigation District, China[J]. Agricultural Water Management, 2021, 255: 107032. doi: 10.1016/j.agwat.2021.107032
|
| [4] |
ALLEY W M, TAYLOR C J. The value of long-term ground water level monitoring[J]. Ground Water, 2001, 39(6): 801. doi: 10.1111/j.1745-6584.2001.tb02466.x
|
| [5] |
JÚNEZ-FERREIRA H E, HERNÁNDEZ-HERNÁNDEZ M A, HERRERA G S, et al. Assessment of changes in regional groundwater levels through spatio-temporal Kriging: Application to the southern Basin of Mexico aquifer system[J]. Hydrogeology Journal, 2023, 31(6): 1405-1423. doi: 10.1007/s10040-023-02681-y
|
| [6] |
MIRZAIE-NODOUSHAN F, BOZORG-HADDAD O, LOÁICIGA H A. Optimal design of groundwater-level monitoring networks[J]. Journal of Hydroinformatics, 2017, 19(6): 920-929. doi: 10.2166/hydro.2017.044
|
| [7] |
GUEKIE SIMO A T, MARACHE A, LASTENNET R, et al. Geostatistical investigations for suitable mapping of the water table: The Bordeaux case (France)[J]. Hydrogeology Journal, 2016, 24(1): 231-248. doi: 10.1007/s10040-015-1316-4
|
| [8] |
MALEKZADEH M, KARDAR S, SHABANLOU S. Simulation of groundwater level using MODFLOW, extreme learning machine and Wavelet-Extreme Learning Machine models[J]. Groundwater for Sustainable Development, 2019, 9: 100279. doi: 10.1016/j.gsd.2019.100279
|
| [9] |
郑凌云, 张永祥, 贾瑞涛, 等. 基于GMS的北京市朝阳区地下水环境数值模拟与预测分析[J]. 水利水电技术(中英文), 2022(1): 114-123. doi: 10.13928/j.cnki.wrahe.2022.01.012
ZHENG L Y, ZHANG Y X, JIA R T, et al. GMS-based numerical simulation and prediction analysis of groundwater environment in Chaoyang District of Beijing[J]. Water Resources and Hydropower Engineering, 2022(1): 114-123. (in Chinese with English abstract doi: 10.13928/j.cnki.wrahe.2022.01.012
|
| [10] |
吴鑫, 孙伯明, 陈菁, 等. 基于Visual MODFLOW的挠力河流域地下水数值模拟与预测分析[J]. 水电能源科学, 2020, 38(12): 37-40. doi: 10.20040/j.cnki.1000-7709.2020.12.009
WU X, SUN B M, CHEN J, et al. Numerical simulation and prediction analysis of groundwater in naoli river basin based on visual MODFLOW[J]. Water Resources and Power, 2020, 38(12): 37-40. (in Chinese with English abstract doi: 10.20040/j.cnki.1000-7709.2020.12.009
|
| [11] |
FAN Y, LI H, MIGUEZ-MACHO G. Global patterns of groundwater table depth[J]. Science, 2013, 339: 940-943. doi: 10.1126/science.1229881
|
| [12] |
LANCIA M, YAO Y Y, ANDREWS C B, et al. The China groundwater crisis: A mechanistic analysis with implications for global sustainability[J]. Sustainable Horizons, 2022, 4: 100042. doi: 10.1016/j.horiz.2022.100042
|
| [13] |
沈晔, 李海涛, 黎涛, 等. 地下水位预测: 集合卡尔曼滤波(EnKF)应用概述[J]. 水文地质工程地质, 2014, 41(1): 21-24. doi: 10.16030/j.cnki.issn.1000-3665.2014.01.004
SHEN Y, LI H T, LI T, et al. Groundwater level forecast: Overview of application of the Ensemble Kalman filter(EnKF)[J]. Hydrogeology & Engineering Geology, 2014, 41(1): 21-24. (in Chinese with English abstract doi: 10.16030/j.cnki.issn.1000-3665.2014.01.004
|
| [14] |
KNOTTERS M, BIERKENS M F P. Predicting water table depths in space and time using a regionalised time series model[J]. Geoderma, 2001, 103(1/2): 51-77. doi: 10.1016/s0016-7061(01)00069-6
|
| [15] |
YAN S F, YU S G, WU Y B, et al. Understanding groundwater table using a statistical model[J]. Water Science and Engineering, 2018, 11(1): 1-7. doi: 10.1016/j.wse.2018.03.003
|
| [16] |
MALAKAR P, MUKHERJEE A, BHANJA S N, et al. Machine-learning-based regional-scale groundwater level prediction using GRACE[J]. Hydrogeology Journal, 2021, 29(3): 1027-1042. doi: 10.1007/s10040-021-02306-2
|
| [17] |
PETERMANN E, MEYER H, NUSSBAUM M, et al. Mapping the geogenic radon potential for Germany by machine learning[J]. Science of The Total Environment, 2021, 754: 142291. doi: 10.1016/j.scitotenv.2020.142291
|
| [18] |
NAGHIBI S A, POURGHASEMI H R. A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping[J]. Water Resources Management, 2015, 29(14): 5217-5236. doi: 10.1007/s11269-015-1114-8
|
| [19] |
KRISHNA B, SATYAJI RAO Y R, VIJAYA T. Modelling groundwater levels in an urban coastal aquifer using artificial neural networks[J]. Hydrological Processes, 2008, 22(8): 1180-1188. doi: 10.1002/hyp.6686
|
| [20] |
ALSHEHRI F, SULTAN M, KARKI S, et al. Mapping the distribution of shallow groundwater occurrences using remote sensing-based statistical modeling over southwest Saudi Arabia[J]. Remote Sensing, 2020, 12(9): 1361. doi: 10.3390/rs12091361
|
| [21] |
汪泉娟, 孙敬锋, 杨英杰, 等. 克里金方法与深度学习方法用于浅层地下水位估计的对比研究: 以深汕特别合作区为例[J]. 地质科技通报, 2024, 43(4): 291-301. doi: 10.19509/j.cnki.dzkq.tb20230192
WANG Q J, SUN J F, YANG Y J, et al. A comparative study of Kriging and deep learning methods for shallow groundwater level estimation: A case study of the Shenzhen-Shanwei Special Cooperation Zone[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 291-301. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20230192
|
| [22] |
RAO P Z, WANG Y C, LIU Y, et al. A comparison of multiple methods for mapping groundwater levels in the Mu Us Sandy Land, China[J]. Journal of Hydrology: Regional Studies, 2022, 43: 101189. doi: 10.1016/j.ejrh.2022.101189
|
| [23] |
CRACKNELL M J, READING A M. Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information[J]. Computers & Geosciences, 2014, 63: 22-33. doi: 10.1016/j.cageo.2013.10.008
|
| [24] |
刘兆凤, 吴士良. 江苏地下水资源概况[J]. 地质学刊, 1998(A12): 26-29.
LIU Z F, WU S L. General situation of groundwater resources in Jiangsu Province[J]. Journal of Geology, 1998(A12): 26-29. (in Chinese)
|
| [25] |
岳冬冬. 沂沭河下游沿海平原地下水化学形成演化与水文地球化学模拟[D]. 长春: 吉林大学, 2017.
YUE D D. Groundwater chemical formation and evolution and inverse modeling in the coastal plain, downstream of Yishu River[D]. Changchun: Jilin University, 2017. (in Chinese with English abstract
|
| [26] |
马佳玉. 江苏沿海地区地面沉降多尺度精细化研究[D]. 南京: 南京大学, 2018.
MA J Y. Meticulously research on land subsidence in coastal area of Jiangsu at different scales[D]. Nanjing: Nanjing University, 2018. (in Chinese with English abstract
|
| [27] |
吴吉春, 冯志祥, 姚炳魁, 等. 江苏省地下水现代化管理研究[M]. 北京: 中国水利水电出版社, 2016.
WU J C, FENG Z X, YAO B K. Study on modern management of groundwater in Jiangsu Province[M]. Beijing: China Water & Power Press, 2016. (in Chinese)
|
| [28] |
HAYKIN S. Neural networks: A comprehensive foundation[M]. US: Prentice Hall PTR, 1994.
|
| [29] |
PARTOVI F Y, ANANDARAJAN M. Classifying inventory using an artificial neural network approach[J]. Computers & Industrial Engineering, 2002, 41(4): 389-404. doi: 10.1016/S0360-8352(01)00064-X
|
| [30] |
AKSU G, GÜZELLER C O, ESER M T. The effect of the normalization method used in different sample sizes on the success of artificial neural network model[J]. International Journal of Assessment Tools in Education, 2019, 6(2): 170-192. doi: 10.21449/ijate.479404
|
| [31] |
SRIVASTAVA N, HINTON G E, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. J Mach Learn Res, 2020, 15: 1929-1958.
|
| [32] |
MONTAVON G, ORR G, MLLER K R. Neural Networks: Tricks of the Trade[M]. Springer Publishing Company, Incorporated, 2012.
|
| [33] |
KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv: , 1412, 6980: 2014.
|
| [34] |
邰晋, 龚绪龙, 梁莹, 等. 基于光谱指数和端元混合模型的滨海地下水溶解性有机质来源示踪[J]. 地质科技通报, 2025, 44(6): 237-248. doi: 10.19509/j.cnki.dzkq.tb20230711
TAI JIN, GONG XULONG, LIANG YING, et al. Tracing of the sources of dissolved organic matter in coastal groundwater using fluorescence indices and end-member mixing analysis[J]. Bulletin of Geological Science and Technology, 2025, 44(6): 237-248. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20230711
|
| [35] |
MOORE W S. The subterranean estuary: A reaction zone of ground water and sea water[J]. Marine Chemistry, 1999, 65(1/2): 111-125. doi: 10.1016/s0304-4203(99)00014-6
|
| [36] |
KOMMINENI M, REDDY K V, JAGATHI K, et al. Groundwater level prediction using modified linear regression[C]//2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). Coimbatore, India: IEEE, 2020: 1164-1168.
|
| [37] |
PASANDI M, SALMANI N, SAMANI N. Spatial estimation of water-table depth by artificial neural networks in light of ancillary data[J]. Hydrological Sciences Journal, 2017, 62(12): 2012-2024. doi: 10.1080/02626667.2017.1349908
|
| [38] |
RUDIN C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[J]. Nature Machine Intelligence, 2019, 1(5): 206-215. doi: 10.1038/s42256-019-0048-x
|
| [39] |
LUNDBERG S M, LEE S I. A unified approach to interpreting model predictions[C]. Long Beach, CA, USA: Neural Information Processing Systems, 2017.
|
| [40] |
YILMAZ E O, TONBUL H, KAVZOGLU T. Marine mucilage mapping with explained deep learning model using water-related spectral indices: A case study of Dardanelles Strait, Turkey[J]. Stochastic Environmental Research and Risk Assessment, 2024, 38(1): 51-68. doi: 10.1007/s00477-023-02560-8
|
| [41] |
HU Z M, TANG S N, MO S X, et al. Water storage changes (2003-2020) in the Ordos Basin, China, explained by GRACE data and interpretable deep learning[J]. Hydrogeology Journal, 2024, 32(1): 307-320.
|
| [42] |
霍思远, 靳孟贵. 不同降水及灌溉条件下的地下水入渗补给规律[J]. 水文地质工程地质, 2015, 42(5): 6-13. doi: 10.16030/j.cnki.issn.1000-3665.2015.05.02
HUO S Y, JIN M G. Effects of precipitation and irrigation on vertical groundwater recharge[J]. Hydrogeology & Engineering Geology, 2015, 42(5): 6-13. (in Chinese with English abstract doi: 10.16030/j.cnki.issn.1000-3665.2015.05.02
|
| [43] |
CORNISH P M, VERTESSY R A. Forest age-induced changes in evapotranspiration and water yield in a eucalypt forest[J]. Journal of Hydrology, 2001, 242(1/2): 43-63. doi: 10.1016/s0022-1694(00)00384-x
|
| [44] |
CORNISH P M. The effects of logging and forest regeneration on water yields in a moist eucalypt forest in New South Wales, Australia[J]. Journal of Hydrology, 1993, 150(2/3/4): 301-322. doi: 10.1016/0022-1694(93)90114-o
|
| [45] |
MENENTI M, BASTIAANSSEN W G M, VAN EICK D. Determination of surface hemispherical reflectance with Thematic Mapper data[J]. Remote Sensing of Environment, 1989, 28: 327-337. doi: 10.1016/0034-4257(89)90124-7
|
| [46] |
梁杏, 张人权, 牛宏, 等. 地下水流系统理论与研究方法的发展[J]. 地质科技情报, 2012, 31(5): 143-151.
LIANG X, ZHANG R Q, NIU H, et al. Development of the theory and research method of groundwater flow system[J]. Geological Science and Technology Information, 2012, 31(5): 143-151. (in Chinese with English abstract
|
| [47] |
SAJIL KUMAR P J. GIS-based mapping of water-level fluctuations (WLF) and its impact on groundwater in an Agrarian District in Tamil Nadu, India[J]. Environment, Development and Sustainability, 2022, 24(1): 994-1009. doi: 10.1007/s10668-021-01479-w
|
| [48] |
GONZALEZ R Q, ARSANJANI J J. Prediction of groundwater level variations in a changing climate: A Danish case study[J]. ISPRS International Journal of Geo-Information, 2021, 10(11): 792. doi: 10.3390/ijgi10110792
|