Citation: | HUANG Yihong,YANG Jie,LI Hexue,et al. Numerical simulation of shallow groundwater salinization process induced by paleo-seawater transgression in North China Plain[J]. Bulletin of Geological Science and Technology,2025,${article_volume}(0):1-13 doi: 10.19509/j.cnki.dzkq.tb20230709 |
To investigate the salinization of groundwater impacted by Late Pleistocene/Holocene transgression, current seawater intrusion, and evaporation, and to comprehend the consequences of marine transgression events and seawater intrusion due to groundwater over-exploitation on groundwater salinization, two shallow aquifers were chosen for research in the Cangzhou area.
Using the SEAWAT software, a paleo-hydrogeological model was developed to simulate the evolution of groundwater salinity since the Holocene, relying on a series of paleo-environmental evolution data.
The results suggest that the distribution of shallow groundwater salinity is impacted by the Holocene transgression/regression. A traditional fingering process of saline water infiltration in shallow areas was discovered at an average rate of 23 mm/a, resulting from transgression events. Despite the low-permeability aquitards, saline infiltration persists over extended periods, reaching depths of up to 140~160 m B.S.L.
Trapped marine water from the Late Pleistocene and Holocene transgression events remains present and has not been flushed out. The salt transport in the coastal aquifer-aquitard system has yet to reach an equilibrium state, potentially affecting the groundwater quality of deep confined aquifers.
[1] |
LI J, GONG X L, LIANG X, et al. Salinity evolution of aquitard porewater associated with transgression and regression in the coastal plain of eastern China[J]. Journal of Hydrology, 2021, 603: 127050. doi: 10.1016/j.jhydrol.2021.127050
|
[2] |
GENG X L, MICHAEL H A. Preferential flow enhances pumping-induced saltwater intrusion in volcanic aquifers[J]. Water Resources Research, 2020, 56(5): e2019WR026390. doi: 10.1029/2019WR026390
|
[3] |
DIEU L P, CONG-THI D, SEGERS T, et al. Groundwater salinization and freshening processes in the Luy River coastal aquifer, Vietnam[J]. Water, 2022, 14(15): 2358. doi: 10.3390/w14152358
|
[4] |
CANTELON J A, GUIMOND J A, ROBINSON C E, et al. Vertical saltwater intrusion in coastal aquifers driven by episodic flooding: A review[J]. Water Resources Research, 2022, 58(11): e2022WR032614. doi: 10.1029/2022WR032614
|
[5] |
HEISS J W, MASE B, SHEN C J. Effects of future increases in tidal flooding on salinity and groundwater dynamics in coastal aquifers[J]. Water Resources Research, 2022, 58(12): e2022WR033195. doi: 10.1029/2022WR033195
|
[6] |
HINGST M C, MCQUIGGAN R W, PETERS C N, et al. Surface water-groundwater connections as pathways for inland salinization of coastal aquifers[J]. Groundwater, 2023, 61(5): 626-638. doi: 10.1111/gwat.13274
|
[7] |
MORA A, MAHLKNECHT J, LEDESMA-RUIZ R, et al. Dynamics of major and trace elements during seawater intrusion in a coastal sedimentary aquifer impacted by anthropogenic activities[J]. Journal of Contaminant Hydrology, 2020, 232: 103653. doi: 10.1016/j.jconhyd.2020.103653
|
[8] |
POST V E A, KOOI H. Rates of salinization by free convection in high-permeability sediments: Insights from numerical modeling and application to the Dutch coastal area[J]. Hydrogeology Journal, 2003, 11(5): 549-559. doi: 10.1007/s10040-003-0271-7
|
[9] |
DELSMAN J R, HU-A-NG K R M, VOS P C, et al. Paleo-modeling of coastal saltwater intrusion during the Holocene: An application to the Netherlands[J]. Hydrology and Earth System Sciences, 2014, 18(10): 3891-3905. doi: 10.5194/hess-18-3891-2014
|
[10] |
VAN ENGELEN J, OUDE ESSINK G H P, KOOI H, et al. On the origins of hypersaline groundwater in the Nile Delta aquifer[J]. Journal of Hydrology, 2018, 560: 301-317. doi: 10.1016/j.jhydrol.2018.03.029
|
[11] |
VAN GEER F C, BUI TRAN V, DUBELAAR W, et al. Paleo-hydrogeological reconstruction of the fresh-saline groundwater distribution in the Vietnamese Mekong Delta since the Late Pleistocene[J]. Journal of Hydrology: Regional Studies, 2019, 23: 100594.
|
[12] |
WANG S Q, SHAO J L, SONG X F, et al. Application of MODFLOW and geographic information system to groundwater flow simulation in North China Plain, China[J]. Environmental Geology, 2008, 55(7): 1449-1462. doi: 10.1007/s00254-007-1095-x
|
[13] |
LUO Z J, WANG Y. 3-D variable parameter numerical model for evaluation of the planned exploitable groundwater resource in regional unconsolidated sediments[J]. Journal of Hydrodynamics, 2012, 24(6): 959-968. doi: 10.1016/S1001-6058(11)60324-7
|
[14] |
CHEN X X, LUO Z J, ZHOU S L. Influences of soil hydraulic and mechanical parameters on land subsidence and ground fissures caused by groundwater exploitation[J]. Journal of Hydrodynamics, 2014, 26(1): 155-164. doi: 10.1016/S1001-6058(14)60018-4
|
[15] |
张宗祜, 沈照理, 薛禹群, 等. 华北平原地下水环境演化[M]. 北京: 地质出版社, 2000.
ZHANG Z H, SHEN Z L, XUE Y Q, et al. Evolution of groundwater environment in North China Plain[M]. Beijing: Geological Publishing House, 2000. (in Chinese)
|
[16] |
CHEN Z Y, QI J X, XU J M, et al. Paleoclimatic interpretation of the past 30 ka from isotopic studies of the deep confined aquifer of the North China Plain[J]. Applied Geochemistry, 2003, 18(7): 997-1009. doi: 10.1016/S0883-2927(02)00206-8
|
[17] |
LIU H Y, GUO H M, POURRET O, et al. Distribution of rare earth elements in sediments of the North China Plain: A probe of sedimentation process[J]. Applied Geochemistry, 2021, 134: 105089. doi: 10.1016/j.apgeochem.2021.105089
|
[18] |
王婷, 邹春辉, 毛龙江, 等. 渤海湾西岸CZ01钻孔沉积物粒度端元分析及其气候-海平面变化响应[J]. 古地理学报, 2022, 24(6): 1224-1237. doi: 10.7605/gdlxb.2022.06.083
WANG T, ZOU C H, MAO L J, et al. Sediment grain size end-member analysis and its response to climate and sea-level changes in CZ01 borehole on west coast of Bohai Bay[J]. Journal of Palaeogeography (Chinese Edition), 2022, 24(6): 1224-1237. (in Chinese with English abstract doi: 10.7605/gdlxb.2022.06.083
|
[19] |
XUE X B, XIE X J, LI J X, et al. The mechanism of iodine enrichment in groundwater from the North China Plain: Insight from two inland and coastal aquifer sediment boreholes[J]. Environmental Science and Pollution Research, 2022, 29(32): 49007-49028. doi: 10.1007/s11356-021-18078-x
|
[20] |
KWONG H T, JIAO J J, LIU K, et al. Geochemical signature of pore water from core samples and its implications on the origin of saline pore water in Cangzhou, North China Plain[J]. Journal of Geochemical Exploration, 2015, 157: 143-152. doi: 10.1016/j.gexplo.2015.06.008
|
[21] |
吴忱. 华北地貌环境及其形成演化[M]. 北京: 科学出版社, 2008.
WU C. Landform environment and its formation in North China[M]. Beijing: Science Press, 2008. (in Chinese)
|
[22] |
刘艳霞, 黄海军, 董慧君, 等. 渤海西南岸全新世最大海侵界线及其地貌特征[J]. 第四纪研究, 2015, 35(2): 340-353. doi: 10.11928/j.issn.1001-7410.2015.02.09
LIU Y X, HUANG H J, DONG H J, et al. Geomorphic characteristics and location of the maximum Holocene transgression boundary in the southwestern coast of the Bohai Sea[J]. Quaternary Sciences, 2015, 35(2): 340-353. (in Chinese with English abstract doi: 10.11928/j.issn.1001-7410.2015.02.09
|
[23] |
李曼玥, 张生瑞, 许清海, 等. 华北平原末次冰盛期以来典型时段古环境格局[J]. 中国科学(地球科学), 2019, 49(8): 1269-1277. doi: 10.1360/N072018-00016
LI M Y, ZHANG S R, XU Q H, et al. Spatial patterns of vegetation and climate in the North China Plain during the Last Glacial Maximum and Holocene climatic optimum[J]. Scientia Sinica (Terrae), 2019, 49(8): 1269-1277. (in Chinese with English abstract doi: 10.1360/N072018-00016
|
[24] |
陈永胜, 王宏, 李建芬, 等. 渤海湾西岸BT113孔35 ka以来的沉积环境演化与海陆作用[J]. 吉林大学学报(地球科学版), 2012, 42(增刊1): 344-354.
CHEN Y S, WANG H, LI J F, et al. Sedimentary environment since 35 ka and terrestrial-marine interaction revealed by borehole BT113 in the western coast of Bohai Bay, China[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(S1): 344-354. (in Chinese with English abstract
|
[25] |
庄振业, 林振宏, 刘志杰, 等. 海平面变化及其海岸响应[J]. 海洋地质动态, 2003, 19(7): 1-12. doi: 10.3969/j.issn.1009-2722.2003.07.001
ZHUANG Z Y, LIN Z H, LIU Z J, et al. Sea level changes and coastal responses[J]. Marine Geology Letters, 2003, 19(7): 1-12. (in Chinese with English abstract doi: 10.3969/j.issn.1009-2722.2003.07.001
|
[26] |
党显璋. 全新世以来滦河三角洲地下咸(卤)水成因与演化机制研究[D]. 武汉: 中国地质大学(武汉), 2022.
DANG X Z. The formation and evolution mechanism of saline groundwater since Holocene in Luanhe River Delta, China[D]. Wuhan: China University of Geosciences(Wuhan), 2022. (in Chinese with English abstract
|
[27] |
马青山, 骆祖江. 沧州市地下水开采-地面沉降数值模拟[J]. 水资源保护, 2015, 31(4): 20-26. doi: 10.3880/j.issn.1004-6933.2015.04.004
MA Q S, LUO Z J. Numerical simulation of groundwater exploitation and land subsidence in Cangzhou City[J]. Water Resources Protection, 2015, 31(4): 20-26. (in Chinese with English abstract doi: 10.3880/j.issn.1004-6933.2015.04.004
|
[28] |
薛春汀.
XUE C T. Historical changes of coastlines on west and south coasts of Bohai Sea since
|
[29] |
LIU J H, XU H, QIN D Y, et al. Water cycle evolution in the Haihe River Basin in the past
|
[30] |
LANGEVIN C D, THORNE JR D T, DAUSMAN A M, et al. SEAWAT version 4: A computer program for simulation of multi-species solute and heat transport [R]. Reston, Virginia, USA: United States Geological Survey, 2008.
|
[31] |
陈开荣, 陈汉宝, 赵海亮. 基于SEAWAT的海水入侵数值模拟[J]. 水资源与水工程学报, 2012, 23(6): 140-145. doi: 10.11705/j.issn.1672-643X.2012.06.033
CHEN K R, CHEN H B, ZHAO H L. Three-dimensional numerical simulation of seawater intrusion based on SEAWAT[J]. Journal of Water Resources and Water Engineering, 2012, 23(6): 140-145. (in Chinese with English abstract doi: 10.11705/j.issn.1672-643X.2012.06.033
|
[32] |
董贵明, 王颖, 詹红兵, 等. 二维承压非稳定流水均衡区间的数值模拟[J]. 地质科技通报, 2023, 42(4): 75-82.
DONG G M, WANG Y, ZHAN H B, et al. Numerical simulation of the water budget interval for unsteady two-dimensional confined flow[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 75-82. (in Chinese with English abstract
|
[33] |
姚孟, 于胜超, 张可馨, 等. 基于MARUN的海岸带地下水渗流及溶质运移过程研究进展[J]. 地质科技通报, 2023, 42(4): 170-182.
YAO M, YU S C, ZHANG K X, et al. Research progress on coastal groundwater flow and solute transport processes based on MARUN[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 170-182. (in Chinese with English abstract
|
[34] |
邢磊, 焦静娟, 刘雪芹, 等. 渤海海域浅层气分布及地震特征分析[J]. 中国海洋大学学报(自然科学版), 2017, 47(11): 70-78.
XING L, JIAO J J, LIU X Q, et al. Distribution and seismic reflection characteristics of shallow gas in Bohai Sea[J]. Periodical of Ocean University of China, 2017, 47(11): 70-78. (in Chinese with English abstract
|
[35] |
CAO G L, ZHENG C M, SCANLON B R, et al. Use of flow modeling to assess sustainability of groundwater resources in the North China Plain[J]. Water Resources Research, 2013, 49(1): 159-175. doi: 10.1029/2012WR011899
|
[36] |
LIU Y P, YAMANAKA T, ZHOU X, et al. Combined use of tracer approach and numerical simulation to estimate groundwater recharge in an alluvial aquifer system: A case study of Nasunogahara area, central Japan[J]. Journal of Hydrology, 2014, 519: 833-847. doi: 10.1016/j.jhydrol.2014.08.017
|
[37] |
TANG R, HAN X D, WANG X G, et al. Optimized main ditch water control for agriculture in northern Huaihe River Plain, Anhui Province, China, using MODFLOW groundwater table simulations[J]. Water, 2022, 14(1): 29.
|
[38] |
EISSA M A, THOMAS J M, POHLL G, et al. Groundwater recharge and salinization in the arid coastal plain aquifer of the Wadi Watir Delta, Sinai, Egypt[J]. Applied Geochemistry, 2016, 71: 48-62. doi: 10.1016/j.apgeochem.2016.05.017
|
[39] |
HAN D M, CAO G L, CURRELL M J, et al. Groundwater salinization and flushing during glacial-interglacial cycles: Insights from aquitard porewater tracer profiles in the North China Plain[J]. Water Resources Research, 2020, 56(11): e2020WR027879. doi: 10.1029/2020WR027879
|
[40] |
BATLLE-AGUILAR J, COOK P G, HARRINGTON G A. Comparison of hydraulic and chemical methods for determining hydraulic conductivity and leakage rates in argillaceous aquitards[J]. Journal of Hydrology, 2016, 532: 102-121. doi: 10.1016/j.jhydrol.2015.11.035
|
[41] |
史洪飞, 哈建强, 李瑞森, 等. 沧州地下水超采与生态环境演变及控制措施[J]. 南水北调与水利科技, 2008, 6(6): 72-74. doi: 10.3969/j.issn.1672-1683.2008.06.021
SHI H F, HA J Q, LI R S, et al. Groundwater overexploitation and ecological environment evolution and controlling measures in Cangzhou City[J]. South-to-North Water Transfers and Water Science & Technology, 2008, 6(6): 72-74. (in Chinese with English abstract doi: 10.3969/j.issn.1672-1683.2008.06.021
|
[42] |
CAO G L, HAN D M, CURRELL M J, et al. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations[J]. Journal of Asian Earth Sciences, 2016, 127: 119-136. doi: 10.1016/j.jseaes.2016.05.025
|
[43] |
SHEN C J, ZHANG C M, KONG J, et al. Solute transport influenced by unstable flow in beach aquifers[J]. Advances in Water Resources, 2019, 125: 68-81. doi: 10.1016/j.advwatres.2019.01.009
|
[44] |
肖勋, 施文光, 王全荣. 井内混合效应与尺度效应对注入井附近溶质径向弥散过程的影响[J]. 地球科学, 2020, 45(4): 1439-1446.
XIAO X, SHI W G, WANG Q R. Effect of mixing effect and scale-dependent dispersion for radial solute transport near the injection well[J]. Earth Science, 2020, 45(4): 1439-1446. (in Chinese with English abstract
|
[45] |
CHANG Y W, HU B X, XU Z X, et al. Numerical simulation of seawater intrusion to coastal aquifers and brine water/freshwater interaction in south coast of Laizhou Bay, China[J]. Journal of Contaminant Hydrology, 2018, 215: 1-10. doi: 10.1016/j.jconhyd.2018.06.002
|
[46] |
KAZMIERCZAK J, MÜLLER S, NILSSON B, et al. Groundwater flow and heterogeneous discharge into a seepage lake: Combined use of physical methods and hydrochemical tracers[J]. Water Resources Research, 2016, 52(11): 9109-9130. doi: 10.1002/2016WR019326
|