Turn off MathJax
Article Contents
HUANG Yihong,YANG Jie,LI Hexue,et al. Numerical simulation of shallow groundwater salinization process induced by paleo-seawater transgression in North China Plain[J]. Bulletin of Geological Science and Technology,2025,44(6):1-13 doi: 10.19509/j.cnki.dzkq.tb20230709
Citation: HUANG Yihong,YANG Jie,LI Hexue,et al. Numerical simulation of shallow groundwater salinization process induced by paleo-seawater transgression in North China Plain[J]. Bulletin of Geological Science and Technology,2025,44(6):1-13 doi: 10.19509/j.cnki.dzkq.tb20230709

Numerical simulation of shallow groundwater salinization process induced by paleo-seawater transgression in North China Plain

doi: 10.19509/j.cnki.dzkq.tb20230709
More Information
  • Author Bio:

    E-mail:yar1001826@163.com

  • Corresponding author: E-mail:jxli@cug.edu.cn
  • Received Date: 20 Dec 2023
  • Accepted Date: 24 Apr 2024
  • Rev Recd Date: 23 Apr 2024
  • Available Online: 01 Sep 2025
  • Objective

    To investigate the groundwater salinization process influenced by the combined effects of the Late Pleistocene and Holocene transgression, modern seawater intrusion, and evaporation, two shallow aquifer groups were selected as the research objects in the Cangzhou area.

    Methods

    Based on a series of paleo-environmental evolution data, a two-dimensional palaeo hydrogeological model was established using SEAWAT software to simulate the evolution process of groundwater salinity since the Holocene.

    Results

    The results suggest that the current distribution of shallow groundwater salinity is impacted by the Holocene transgression/regression. The palaeo seawater infiltrated downward in a finger-like pattern, with an average infiltration rate 23 mm/a. The brine formed by the palaeo transgressions has infiltrated to depths of −140 m to −160 m B.S.L. The palaeo seawater captured and stored during the Late Pleistocene transgression and Holocene transgression events still remains in the aquifer and has not been completely desalinated. The salt transport process in coastal groundwater has yet to reach equilibrium. The palaeo-saltwater formed by ancient transgressions continues to seep downward at a low rate, and the groundwater salinization process is ongoing, which may lead to further deterioration of water quality in deeper aquifers.

    Conclusion

    The research results can provide a reference for water resources management in coastal areas.

     

  • loading
  • [1]
    LI J, GONG X L, LIANG X, et al. Salinity evolution of aquitard porewater associated with transgression and regression in the coastal plain of eastern China[J]. Journal of Hydrology, 2021, 603: 127050. doi: 10.1016/j.jhydrol.2021.127050
    [2]
    GENG X L, MICHAEL H A. Preferential flow enhances pumping-induced saltwater intrusion in volcanic aquifers[J]. Water Resources Research, 2020, 56(5): e2019WR026390. doi: 10.1029/2019WR026390
    [3]
    DIEU L P, CONG-THI D, SEGERS T, et al. Groundwater salinization and freshening processes in the Luy River coastal aquifer, Vietnam[J]. Water, 2022, 14(15): 2358. doi: 10.3390/w14152358
    [4]
    CANTELON J A, GUIMOND J A, ROBINSON C E, et al. Vertical saltwater intrusion in coastal aquifers driven by episodic flooding: A review[J]. Water Resources Research, 2022, 58(11): e2022WR032614. doi: 10.1029/2022WR032614
    [5]
    HEISS J W, MASE B, SHEN C J. Effects of future increases in tidal flooding on salinity and groundwater dynamics in coastal aquifers[J]. Water Resources Research, 2022, 58(12): e2022WR033195. doi: 10.1029/2022WR033195
    [6]
    HINGST M C, MCQUIGGAN R W, PETERS C N, et al. Surface water-groundwater connections as pathways for inland salinization of coastal aquifers[J]. Groundwater, 2023, 61(5): 626-638. doi: 10.1111/gwat.13274
    [7]
    MORA A, MAHLKNECHT J, LEDESMA-RUIZ R, et al. Dynamics of major and trace elements during seawater intrusion in a coastal sedimentary aquifer impacted by anthropogenic activities[J]. Journal of Contaminant Hydrology, 2020, 232: 103653. doi: 10.1016/j.jconhyd.2020.103653
    [8]
    POST V E A, KOOI H. Rates of salinization by free convection in high-permeability sediments: Insights from numerical modeling and application to the Dutch coastal area[J]. Hydrogeology Journal, 2003, 11(5): 549-559. doi: 10.1007/s10040-003-0271-7
    [9]
    DELSMAN J R, HUANG K R M, VOS P C, et al. Paleo-modeling of coastal saltwater intrusion during the Holocene: An application to the Netherlands[J]. Hydrology and Earth System Sciences, 2014, 18(10): 3891-3905. doi: 10.5194/hess-18-3891-2014
    [10]
    VAN ENGELEN J, OUDE ESSINK G H P, KOOI H, et al. On the origins of hypersaline groundwater in the Nile Delta aquifer[J]. Journal of Hydrology, 2018, 560: 301-317. doi: 10.1016/j.jhydrol.2018.03.029
    [11]
    VAN GEER F C, BUI TRAN V, DUBELAAR W, et al. Paleo-hydrogeological reconstruction of the fresh-saline groundwater distribution in the Vietnamese Mekong Delta since the Late Pleistocene[J]. Journal of Hydrology(Regional Studies), 2019, 23: 100594.
    [12]
    WANG S Q, SHAO J L, SONG X F, et al. Application of MODFLOW and geographic information system to groundwater flow simulation in North China Plain, China[J]. Environmental Geology, 2008, 55(7): 1449-1462. doi: 10.1007/s00254-007-1095-x
    [13]
    LUO Z J, WANG Y. 3-D variable parameter numerical model for evaluation of the planned exploitable groundwater resource in regional unconsolidated sediments[J]. Journal of Hydrodynamics, 2012, 24(6): 959-968. doi: 10.1016/S1001-6058(11)60324-7
    [14]
    CHEN X X, LUO Z J, ZHOU S L. Influences of soil hydraulic and mechanical parameters on land subsidence and ground fissures caused by groundwater exploitation[J]. Journal of Hydrodynamics, 2014, 26(1): 155-164. doi: 10.1016/S1001-6058(14)60018-4
    [15]
    张宗祜, 沈照理, 薛禹群, 等. 华北平原地下水环境演化[M]. 北京: 地质出版社, 2000.

    ZHANG Z H, SHEN Z L, XUE Y Q, et al. Evolution of groundwater environment in North China Plain[M]. Beijing: Geological Publishing House, 2000. (in Chinese)
    [16]
    CHEN Z Y, QI J X, XU J M, et al. Paleoclimatic interpretation of the past 30 ka from isotopic studies of the deep confined aquifer of the North China Plain[J]. Applied Geochemistry, 2003, 18(7): 997-1009. doi: 10.1016/S0883-2927(02)00206-8
    [17]
    LIU H Y, GUO H M, POURRET O, et al. Distribution of rare earth elements in sediments of the North China Plain: A probe of sedimentation process[J]. Applied Geochemistry, 2021, 134: 105089. doi: 10.1016/j.apgeochem.2021.105089
    [18]
    王婷, 邹春辉, 毛龙江, 等. 渤海湾西岸CZ01钻孔沉积物粒度端元分析及其气候−海平面变化响应[J]. 古地理学报, 2022, 24(6): 1224-1237. doi: 10.7605/gdlxb.2022.06.083

    WANG T, ZOU C H, MAO L J, et al. Sediment grain size end-member analysis and its response to climate and sea-level changes in CZ01 borehole on west coast of Bohai Bay[J]. Journal of Palaeogeography (Chinese Edition), 2022, 24(6): 1224-1237. (in Chinese with English abstract doi: 10.7605/gdlxb.2022.06.083
    [19]
    XUE X B, XIE X J, LI J X, et al. The mechanism of iodine enrichment in groundwater from the North China Plain: Insight from two inland and coastal aquifer sediment boreholes[J]. Environmental Science and Pollution Research, 2022, 29(32): 49007-49028. doi: 10.1007/s11356-021-18078-x
    [20]
    KWONG H T, JIAO J J, LIU K, et al. Geochemical signature of pore water from core samples and its implications on the origin of saline pore water in Cangzhou, North China Plain[J]. Journal of Geochemical Exploration, 2015, 157: 143-152. doi: 10.1016/j.gexplo.2015.06.008
    [21]
    吴忱. 华北地貌环境及其形成演化[M]. 北京: 科学出版社, 2008.

    WU C. Landform environment and its formation in North China[M]. Beijing: Science Press, 2008. (in Chinese)
    [22]
    刘艳霞, 黄海军, 董慧君, 等. 渤海西南岸全新世最大海侵界线及其地貌特征[J]. 第四纪研究, 2015, 35(2): 340-353. doi: 10.11928/j.issn.1001-7410.2015.02.09

    LIU Y X, HUANG H J, DONG H J, et al. Geomorphic characteristics and location of the maximum Holocene transgression boundary in the southwestern coast of the Bohai Sea[J]. Quaternary Sciences, 2015, 35(2): 340-353. (in Chinese with English abstract doi: 10.11928/j.issn.1001-7410.2015.02.09
    [23]
    李曼玥, 张生瑞, 许清海, 等. 华北平原末次冰盛期以来典型时段古环境格局[J]. 中国科学(地球科学), 2019, 49(8): 1269-1277. doi: 10.1360/N072018-00016

    LI M Y, ZHANG S R, XU Q H, et al. Spatial patterns of vegetation and climate in the North China Plain during the Last Glacial Maximum and Holocene climatic optimum[J]. Scientia Sinica (Terrae), 2019, 49(8): 1269-1277. (in Chinese with English abstract doi: 10.1360/N072018-00016
    [24]
    陈永胜, 王宏, 李建芬, 等. 渤海湾西岸BT113孔35 ka以来的沉积环境演化与海陆作用[J]. 吉林大学学报(地球科学版), 2012, 42(增刊1): 344-354.

    CHEN Y S, WANG H, LI J F, et al. Sedimentary environment since 35 ka and terrestrial-marine interaction revealed by borehole BT113 in the western coast of Bohai Bay, China[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(S1): 344-354. (in Chinese with English abstract
    [25]
    庄振业, 林振宏, 刘志杰, 等. 海平面变化及其海岸响应[J]. 海洋地质动态, 2003, 19(7): 1-12. doi: 10.3969/j.issn.1009-2722.2003.07.001

    ZHUANG Z Y, LIN Z H, LIU Z J, et al. Sea level changes and coastal responses[J]. Marine Geology Letters, 2003, 19(7): 1-12. (in Chinese with English abstract doi: 10.3969/j.issn.1009-2722.2003.07.001
    [26]
    党显璋. 全新世以来滦河三角洲地下咸(卤)水成因与演化机制研究[D]. 武汉: 中国地质大学(武汉), 2022.

    DANG X Z. The formation and evolution mechanism of saline groundwater since Holocene in Luanhe River Delta, China[D]. Wuhan: China University of Geosciences(Wuhan), 2022. (in Chinese with English abstract
    [27]
    马青山, 骆祖江. 沧州市地下水开采−地面沉降数值模拟[J]. 水资源保护, 2015, 31(4): 20-26. doi: 10.3880/j.issn.1004-6933.2015.04.004

    MA Q S, LUO Z J. Numerical simulation of groundwater exploitation and land subsidence in Cangzhou City[J]. Water Resources Protection, 2015, 31(4): 20-26. (in Chinese with English abstract doi: 10.3880/j.issn.1004-6933.2015.04.004
    [28]
    薛春汀. 7000年来渤海西岸、南岸海岸线变迁[J]. 地理科学, 2009, 29(2): 217-222. doi: 10.3969/j.issn.1000-0690.2009.02.012

    XUE C T. Historical changes of coastlines on west and south coasts of Bohai Sea since 7000 a B. P.[J]. Scientia Geographica Sinica, 2009, 29(2): 217-222. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0690.2009.02.012
    [29]
    LIU J H, XU H, QIN D Y, et al. Water cycle evolution in the Haihe River basin in the past 10000 years[J]. Chinese Science Bulletin, 2013, 58(27): 3312-3319. doi: 10.1007/s11434-012-5609-x
    [30]
    LANGEVIN C D, THORNE JR D T, DAUSMAN A M, et al. SEAWAT version 4: A computer program for simulation of multi-species solute and heat transport [R]. Reston, Virginia, USA: United States Geological Survey, 2008.
    [31]
    陈开荣, 陈汉宝, 赵海亮. 基于SEAWAT的海水入侵数值模拟[J]. 水资源与水工程学报, 2012, 23(6): 140-145. doi: 10.11705/j.issn.1672-643X.2012.06.033

    CHEN K R, CHEN H B, ZHAO H L. Three-dimensional numerical simulation of seawater intrusion based on SEAWAT[J]. Journal of Water Resources and Water Engineering, 2012, 23(6): 140-145. (in Chinese with English abstract doi: 10.11705/j.issn.1672-643X.2012.06.033
    [32]
    董贵明, 王颖, 詹红兵, 等. 二维承压非稳定流水均衡区间的数值模拟[J]. 地质科技通报, 2023, 42(4): 75-82.

    DONG G M, WANG Y, ZHAN H B, et al. Numerical simulation of the water budget interval for unsteady two-dimensional confined flow[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 75-82. (in Chinese with English abstract
    [33]
    姚孟, 于胜超, 张可馨, 等. 基于MARUN的海岸带地下水渗流及溶质运移过程研究进展[J]. 地质科技通报, 2023, 42(4): 170-182.

    YAO M, YU S C, ZHANG K X, et al. Research progress on coastal groundwater flow and solute transport processes based on MARUN[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 170-182. (in Chinese with English abstract
    [34]
    邢磊, 焦静娟, 刘雪芹, 等. 渤海海域浅层气分布及地震特征分析[J]. 中国海洋大学学报(自然科学版), 2017, 47(11): 70-78.

    XING L, JIAO J J, LIU X Q, et al. Distribution and seismic reflection characteristics of shallow gas in Bohai Sea[J]. Periodical of Ocean University of China, 2017, 47(11): 70-78. (in Chinese with English abstract
    [35]
    CAO G L, ZHENG C M, SCANLON B R, et al. Use of flow modeling to assess sustainability of groundwater resources in the North China Plain[J]. Water Resources Research, 2013, 49(1): 159-175. doi: 10.1029/2012WR011899
    [36]
    LIU Y P, YAMANAKA T, ZHOU X, et al. Combined use of tracer approach and numerical simulation to estimate groundwater recharge in an alluvial aquifer system: A case study of Nasunogahara area, central Japan[J]. Journal of Hydrology, 2014, 519: 833-847. doi: 10.1016/j.jhydrol.2014.08.017
    [37]
    TANG R, HAN X D, WANG X G, et al. Optimized main ditch water control for agriculture in northern Huaihe River Plain, Anhui Province, China, using MODFLOW groundwater table simulations[J]. Water, 2022, 14(1): 29.
    [38]
    EISSA M A, THOMAS J M, POHLL G, et al. Groundwater recharge and salinization in the arid coastal plain aquifer of the Wadi Watir Delta, Sinai, Egypt[J]. Applied Geochemistry, 2016, 71: 48-62. doi: 10.1016/j.apgeochem.2016.05.017
    [39]
    HAN D M, CAO G L, CURRELL M J, et al. Groundwater salinization and flushing during glacial-interglacial cycles: Insights from aquitard porewater tracer profiles in the North China Plain[J]. Water Resources Research, 2020, 56(11): e2020WR027879. doi: 10.1029/2020WR027879
    [40]
    BATLLE-AGUILAR J, COOK P G, HARRINGTON G A. Comparison of hydraulic and chemical methods for determining hydraulic conductivity and leakage rates in argillaceous aquitards[J]. Journal of Hydrology, 2016, 532: 102-121. doi: 10.1016/j.jhydrol.2015.11.035
    [41]
    史洪飞, 哈建强, 李瑞森, 等. 沧州地下水超采与生态环境演变及控制措施[J]. 南水北调与水利科技, 2008, 6(6): 72-74. doi: 10.3969/j.issn.1672-1683.2008.06.021

    SHI H F, HA J Q, LI R S, et al. Groundwater overexploitation and ecological environment evolution and controlling measures in Cangzhou City[J]. South-to-North Water Transfers and Water Science & Technology, 2008, 6(6): 72-74. (in Chinese with English abstract doi: 10.3969/j.issn.1672-1683.2008.06.021
    [42]
    CAO G L, HAN D M, CURRELL M J, et al. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations[J]. Journal of Asian Earth Sciences, 2016, 127: 119-136. doi: 10.1016/j.jseaes.2016.05.025
    [43]
    SHEN C J, ZHANG C M, KONG J, et al. Solute transport influenced by unstable flow in beach aquifers[J]. Advances in Water Resources, 2019, 125: 68-81. doi: 10.1016/j.advwatres.2019.01.009
    [44]
    肖勋, 施文光, 王全荣. 井内混合效应与尺度效应对注入井附近溶质径向弥散过程的影响[J]. 地球科学, 2020, 45(4): 1439-1446.

    XIAO X, SHI W G, WANG Q R. Effect of mixing effect and scale-dependent dispersion for radial solute transport near the injection well[J]. Earth Science, 2020, 45(4): 1439-1446. (in Chinese with English abstract
    [45]
    CHANG Y W, HU B X, XU Z X, et al. Numerical simulation of seawater intrusion to coastal aquifers and brine water/freshwater interaction in south coast of Laizhou Bay, China[J]. Journal of Contaminant Hydrology, 2018, 215: 1-10. doi: 10.1016/j.jconhyd.2018.06.002
    [46]
    KAZMIERCZAK J, MÜLLER S, NILSSON B, et al. Groundwater flow and heterogeneous discharge into a seepage lake: Combined use of physical methods and hydrochemical tracers[J]. Water Resources Research, 2016, 52(11): 9109-9130. doi: 10.1002/2016WR019326
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(66) PDF Downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return