Turn off MathJax
Article Contents
HUANG Yihong,YANG Jie,LI Hexue,et al. Numerical simulation of shallow groundwater salinization process induced by paleo-seawater transgression in North China Plain[J]. Bulletin of Geological Science and Technology,2025,${article_volume}(0):1-13 doi: 10.19509/j.cnki.dzkq.tb20230709
Citation: HUANG Yihong,YANG Jie,LI Hexue,et al. Numerical simulation of shallow groundwater salinization process induced by paleo-seawater transgression in North China Plain[J]. Bulletin of Geological Science and Technology,2025,${article_volume}(0):1-13 doi: 10.19509/j.cnki.dzkq.tb20230709

Numerical simulation of shallow groundwater salinization process induced by paleo-seawater transgression in North China Plain

doi: 10.19509/j.cnki.dzkq.tb20230709
More Information
  • Author Bio:

    Email:yar1001826@163.com

  • Corresponding author: Email:jxli@cug.edu.cn
  • Received Date: 20 Dec 2023
  • Accepted Date: 24 Apr 2024
  • Rev Recd Date: 23 Apr 2024
  • Available Online: 01 Sep 2025
  • Objective

    To investigate the salinization of groundwater impacted by Late Pleistocene/Holocene transgression, current seawater intrusion, and evaporation, and to comprehend the consequences of marine transgression events and seawater intrusion due to groundwater over-exploitation on groundwater salinization, two shallow aquifers were chosen for research in the Cangzhou area.

    Methods

    Using the SEAWAT software, a paleo-hydrogeological model was developed to simulate the evolution of groundwater salinity since the Holocene, relying on a series of paleo-environmental evolution data.

    Results

    The results suggest that the distribution of shallow groundwater salinity is impacted by the Holocene transgression/regression. A traditional fingering process of saline water infiltration in shallow areas was discovered at an average rate of 23 mm/a, resulting from transgression events. Despite the low-permeability aquitards, saline infiltration persists over extended periods, reaching depths of up to 140~160 m B.S.L.

    Conclusion

    Trapped marine water from the Late Pleistocene and Holocene transgression events remains present and has not been flushed out. The salt transport in the coastal aquifer-aquitard system has yet to reach an equilibrium state, potentially affecting the groundwater quality of deep confined aquifers.

     

  • loading
  • [1]
    LI J, GONG X L, LIANG X, et al. Salinity evolution of aquitard porewater associated with transgression and regression in the coastal plain of eastern China[J]. Journal of Hydrology, 2021, 603: 127050. doi: 10.1016/j.jhydrol.2021.127050
    [2]
    GENG X L, MICHAEL H A. Preferential flow enhances pumping-induced saltwater intrusion in volcanic aquifers[J]. Water Resources Research, 2020, 56(5): e2019WR026390. doi: 10.1029/2019WR026390
    [3]
    DIEU L P, CONG-THI D, SEGERS T, et al. Groundwater salinization and freshening processes in the Luy River coastal aquifer, Vietnam[J]. Water, 2022, 14(15): 2358. doi: 10.3390/w14152358
    [4]
    CANTELON J A, GUIMOND J A, ROBINSON C E, et al. Vertical saltwater intrusion in coastal aquifers driven by episodic flooding: A review[J]. Water Resources Research, 2022, 58(11): e2022WR032614. doi: 10.1029/2022WR032614
    [5]
    HEISS J W, MASE B, SHEN C J. Effects of future increases in tidal flooding on salinity and groundwater dynamics in coastal aquifers[J]. Water Resources Research, 2022, 58(12): e2022WR033195. doi: 10.1029/2022WR033195
    [6]
    HINGST M C, MCQUIGGAN R W, PETERS C N, et al. Surface water-groundwater connections as pathways for inland salinization of coastal aquifers[J]. Groundwater, 2023, 61(5): 626-638. doi: 10.1111/gwat.13274
    [7]
    MORA A, MAHLKNECHT J, LEDESMA-RUIZ R, et al. Dynamics of major and trace elements during seawater intrusion in a coastal sedimentary aquifer impacted by anthropogenic activities[J]. Journal of Contaminant Hydrology, 2020, 232: 103653. doi: 10.1016/j.jconhyd.2020.103653
    [8]
    POST V E A, KOOI H. Rates of salinization by free convection in high-permeability sediments: Insights from numerical modeling and application to the Dutch coastal area[J]. Hydrogeology Journal, 2003, 11(5): 549-559. doi: 10.1007/s10040-003-0271-7
    [9]
    DELSMAN J R, HU-A-NG K R M, VOS P C, et al. Paleo-modeling of coastal saltwater intrusion during the Holocene: An application to the Netherlands[J]. Hydrology and Earth System Sciences, 2014, 18(10): 3891-3905. doi: 10.5194/hess-18-3891-2014
    [10]
    VAN ENGELEN J, OUDE ESSINK G H P, KOOI H, et al. On the origins of hypersaline groundwater in the Nile Delta aquifer[J]. Journal of Hydrology, 2018, 560: 301-317. doi: 10.1016/j.jhydrol.2018.03.029
    [11]
    VAN GEER F C, BUI TRAN V, DUBELAAR W, et al. Paleo-hydrogeological reconstruction of the fresh-saline groundwater distribution in the Vietnamese Mekong Delta since the Late Pleistocene[J]. Journal of Hydrology: Regional Studies, 2019, 23: 100594.
    [12]
    WANG S Q, SHAO J L, SONG X F, et al. Application of MODFLOW and geographic information system to groundwater flow simulation in North China Plain, China[J]. Environmental Geology, 2008, 55(7): 1449-1462. doi: 10.1007/s00254-007-1095-x
    [13]
    LUO Z J, WANG Y. 3-D variable parameter numerical model for evaluation of the planned exploitable groundwater resource in regional unconsolidated sediments[J]. Journal of Hydrodynamics, 2012, 24(6): 959-968. doi: 10.1016/S1001-6058(11)60324-7
    [14]
    CHEN X X, LUO Z J, ZHOU S L. Influences of soil hydraulic and mechanical parameters on land subsidence and ground fissures caused by groundwater exploitation[J]. Journal of Hydrodynamics, 2014, 26(1): 155-164. doi: 10.1016/S1001-6058(14)60018-4
    [15]
    张宗祜, 沈照理, 薛禹群, 等. 华北平原地下水环境演化[M]. 北京: 地质出版社, 2000.

    ZHANG Z H, SHEN Z L, XUE Y Q, et al. Evolution of groundwater environment in North China Plain[M]. Beijing: Geological Publishing House, 2000. (in Chinese)
    [16]
    CHEN Z Y, QI J X, XU J M, et al. Paleoclimatic interpretation of the past 30 ka from isotopic studies of the deep confined aquifer of the North China Plain[J]. Applied Geochemistry, 2003, 18(7): 997-1009. doi: 10.1016/S0883-2927(02)00206-8
    [17]
    LIU H Y, GUO H M, POURRET O, et al. Distribution of rare earth elements in sediments of the North China Plain: A probe of sedimentation process[J]. Applied Geochemistry, 2021, 134: 105089. doi: 10.1016/j.apgeochem.2021.105089
    [18]
    王婷, 邹春辉, 毛龙江, 等. 渤海湾西岸CZ01钻孔沉积物粒度端元分析及其气候-海平面变化响应[J]. 古地理学报, 2022, 24(6): 1224-1237. doi: 10.7605/gdlxb.2022.06.083

    WANG T, ZOU C H, MAO L J, et al. Sediment grain size end-member analysis and its response to climate and sea-level changes in CZ01 borehole on west coast of Bohai Bay[J]. Journal of Palaeogeography (Chinese Edition), 2022, 24(6): 1224-1237. (in Chinese with English abstract doi: 10.7605/gdlxb.2022.06.083
    [19]
    XUE X B, XIE X J, LI J X, et al. The mechanism of iodine enrichment in groundwater from the North China Plain: Insight from two inland and coastal aquifer sediment boreholes[J]. Environmental Science and Pollution Research, 2022, 29(32): 49007-49028. doi: 10.1007/s11356-021-18078-x
    [20]
    KWONG H T, JIAO J J, LIU K, et al. Geochemical signature of pore water from core samples and its implications on the origin of saline pore water in Cangzhou, North China Plain[J]. Journal of Geochemical Exploration, 2015, 157: 143-152. doi: 10.1016/j.gexplo.2015.06.008
    [21]
    吴忱. 华北地貌环境及其形成演化[M]. 北京: 科学出版社, 2008.

    WU C. Landform environment and its formation in North China[M]. Beijing: Science Press, 2008. (in Chinese)
    [22]
    刘艳霞, 黄海军, 董慧君, 等. 渤海西南岸全新世最大海侵界线及其地貌特征[J]. 第四纪研究, 2015, 35(2): 340-353. doi: 10.11928/j.issn.1001-7410.2015.02.09

    LIU Y X, HUANG H J, DONG H J, et al. Geomorphic characteristics and location of the maximum Holocene transgression boundary in the southwestern coast of the Bohai Sea[J]. Quaternary Sciences, 2015, 35(2): 340-353. (in Chinese with English abstract doi: 10.11928/j.issn.1001-7410.2015.02.09
    [23]
    李曼玥, 张生瑞, 许清海, 等. 华北平原末次冰盛期以来典型时段古环境格局[J]. 中国科学(地球科学), 2019, 49(8): 1269-1277. doi: 10.1360/N072018-00016

    LI M Y, ZHANG S R, XU Q H, et al. Spatial patterns of vegetation and climate in the North China Plain during the Last Glacial Maximum and Holocene climatic optimum[J]. Scientia Sinica (Terrae), 2019, 49(8): 1269-1277. (in Chinese with English abstract doi: 10.1360/N072018-00016
    [24]
    陈永胜, 王宏, 李建芬, 等. 渤海湾西岸BT113孔35 ka以来的沉积环境演化与海陆作用[J]. 吉林大学学报(地球科学版), 2012, 42(增刊1): 344-354.

    CHEN Y S, WANG H, LI J F, et al. Sedimentary environment since 35 ka and terrestrial-marine interaction revealed by borehole BT113 in the western coast of Bohai Bay, China[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(S1): 344-354. (in Chinese with English abstract
    [25]
    庄振业, 林振宏, 刘志杰, 等. 海平面变化及其海岸响应[J]. 海洋地质动态, 2003, 19(7): 1-12. doi: 10.3969/j.issn.1009-2722.2003.07.001

    ZHUANG Z Y, LIN Z H, LIU Z J, et al. Sea level changes and coastal responses[J]. Marine Geology Letters, 2003, 19(7): 1-12. (in Chinese with English abstract doi: 10.3969/j.issn.1009-2722.2003.07.001
    [26]
    党显璋. 全新世以来滦河三角洲地下咸(卤)水成因与演化机制研究[D]. 武汉: 中国地质大学(武汉), 2022.

    DANG X Z. The formation and evolution mechanism of saline groundwater since Holocene in Luanhe River Delta, China[D]. Wuhan: China University of Geosciences(Wuhan), 2022. (in Chinese with English abstract
    [27]
    马青山, 骆祖江. 沧州市地下水开采-地面沉降数值模拟[J]. 水资源保护, 2015, 31(4): 20-26. doi: 10.3880/j.issn.1004-6933.2015.04.004

    MA Q S, LUO Z J. Numerical simulation of groundwater exploitation and land subsidence in Cangzhou City[J]. Water Resources Protection, 2015, 31(4): 20-26. (in Chinese with English abstract doi: 10.3880/j.issn.1004-6933.2015.04.004
    [28]
    薛春汀. 7000年来渤海西岸、南岸海岸线变迁[J]. 地理科学, 2009, 29(2): 217-222. doi: 10.3969/j.issn.1000-0690.2009.02.012

    XUE C T. Historical changes of coastlines on west and south coasts of Bohai Sea since 7000 a B. P.[J]. Scientia Geographica Sinica, 2009, 29(2): 217-222. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0690.2009.02.012
    [29]
    LIU J H, XU H, QIN D Y, et al. Water cycle evolution in the Haihe River Basin in the past 10000 years[J]. Chinese Science Bulletin, 2013, 58(27): 3312-3319. doi: 10.1007/s11434-012-5609-x
    [30]
    LANGEVIN C D, THORNE JR D T, DAUSMAN A M, et al. SEAWAT version 4: A computer program for simulation of multi-species solute and heat transport [R]. Reston, Virginia, USA: United States Geological Survey, 2008.
    [31]
    陈开荣, 陈汉宝, 赵海亮. 基于SEAWAT的海水入侵数值模拟[J]. 水资源与水工程学报, 2012, 23(6): 140-145. doi: 10.11705/j.issn.1672-643X.2012.06.033

    CHEN K R, CHEN H B, ZHAO H L. Three-dimensional numerical simulation of seawater intrusion based on SEAWAT[J]. Journal of Water Resources and Water Engineering, 2012, 23(6): 140-145. (in Chinese with English abstract doi: 10.11705/j.issn.1672-643X.2012.06.033
    [32]
    董贵明, 王颖, 詹红兵, 等. 二维承压非稳定流水均衡区间的数值模拟[J]. 地质科技通报, 2023, 42(4): 75-82.

    DONG G M, WANG Y, ZHAN H B, et al. Numerical simulation of the water budget interval for unsteady two-dimensional confined flow[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 75-82. (in Chinese with English abstract
    [33]
    姚孟, 于胜超, 张可馨, 等. 基于MARUN的海岸带地下水渗流及溶质运移过程研究进展[J]. 地质科技通报, 2023, 42(4): 170-182.

    YAO M, YU S C, ZHANG K X, et al. Research progress on coastal groundwater flow and solute transport processes based on MARUN[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 170-182. (in Chinese with English abstract
    [34]
    邢磊, 焦静娟, 刘雪芹, 等. 渤海海域浅层气分布及地震特征分析[J]. 中国海洋大学学报(自然科学版), 2017, 47(11): 70-78.

    XING L, JIAO J J, LIU X Q, et al. Distribution and seismic reflection characteristics of shallow gas in Bohai Sea[J]. Periodical of Ocean University of China, 2017, 47(11): 70-78. (in Chinese with English abstract
    [35]
    CAO G L, ZHENG C M, SCANLON B R, et al. Use of flow modeling to assess sustainability of groundwater resources in the North China Plain[J]. Water Resources Research, 2013, 49(1): 159-175. doi: 10.1029/2012WR011899
    [36]
    LIU Y P, YAMANAKA T, ZHOU X, et al. Combined use of tracer approach and numerical simulation to estimate groundwater recharge in an alluvial aquifer system: A case study of Nasunogahara area, central Japan[J]. Journal of Hydrology, 2014, 519: 833-847. doi: 10.1016/j.jhydrol.2014.08.017
    [37]
    TANG R, HAN X D, WANG X G, et al. Optimized main ditch water control for agriculture in northern Huaihe River Plain, Anhui Province, China, using MODFLOW groundwater table simulations[J]. Water, 2022, 14(1): 29.
    [38]
    EISSA M A, THOMAS J M, POHLL G, et al. Groundwater recharge and salinization in the arid coastal plain aquifer of the Wadi Watir Delta, Sinai, Egypt[J]. Applied Geochemistry, 2016, 71: 48-62. doi: 10.1016/j.apgeochem.2016.05.017
    [39]
    HAN D M, CAO G L, CURRELL M J, et al. Groundwater salinization and flushing during glacial-interglacial cycles: Insights from aquitard porewater tracer profiles in the North China Plain[J]. Water Resources Research, 2020, 56(11): e2020WR027879. doi: 10.1029/2020WR027879
    [40]
    BATLLE-AGUILAR J, COOK P G, HARRINGTON G A. Comparison of hydraulic and chemical methods for determining hydraulic conductivity and leakage rates in argillaceous aquitards[J]. Journal of Hydrology, 2016, 532: 102-121. doi: 10.1016/j.jhydrol.2015.11.035
    [41]
    史洪飞, 哈建强, 李瑞森, 等. 沧州地下水超采与生态环境演变及控制措施[J]. 南水北调与水利科技, 2008, 6(6): 72-74. doi: 10.3969/j.issn.1672-1683.2008.06.021

    SHI H F, HA J Q, LI R S, et al. Groundwater overexploitation and ecological environment evolution and controlling measures in Cangzhou City[J]. South-to-North Water Transfers and Water Science & Technology, 2008, 6(6): 72-74. (in Chinese with English abstract doi: 10.3969/j.issn.1672-1683.2008.06.021
    [42]
    CAO G L, HAN D M, CURRELL M J, et al. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations[J]. Journal of Asian Earth Sciences, 2016, 127: 119-136. doi: 10.1016/j.jseaes.2016.05.025
    [43]
    SHEN C J, ZHANG C M, KONG J, et al. Solute transport influenced by unstable flow in beach aquifers[J]. Advances in Water Resources, 2019, 125: 68-81. doi: 10.1016/j.advwatres.2019.01.009
    [44]
    肖勋, 施文光, 王全荣. 井内混合效应与尺度效应对注入井附近溶质径向弥散过程的影响[J]. 地球科学, 2020, 45(4): 1439-1446.

    XIAO X, SHI W G, WANG Q R. Effect of mixing effect and scale-dependent dispersion for radial solute transport near the injection well[J]. Earth Science, 2020, 45(4): 1439-1446. (in Chinese with English abstract
    [45]
    CHANG Y W, HU B X, XU Z X, et al. Numerical simulation of seawater intrusion to coastal aquifers and brine water/freshwater interaction in south coast of Laizhou Bay, China[J]. Journal of Contaminant Hydrology, 2018, 215: 1-10. doi: 10.1016/j.jconhyd.2018.06.002
    [46]
    KAZMIERCZAK J, MÜLLER S, NILSSON B, et al. Groundwater flow and heterogeneous discharge into a seepage lake: Combined use of physical methods and hydrochemical tracers[J]. Water Resources Research, 2016, 52(11): 9109-9130. doi: 10.1002/2016WR019326
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(7) PDF Downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return