Volume 44 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
WANG Jiawei,JIN Siding,WEI Xiangfeng,et al. Orbital cycle recognition and sequence stratigraphic division of the Lower Carboniferous Dawuba Formation shales in Southwest Guizhou[J]. Bulletin of Geological Science and Technology,2025,44(4):288-303 doi: 10.19509/j.cnki.dzkq.tb20230546
Citation: WANG Jiawei,JIN Siding,WEI Xiangfeng,et al. Orbital cycle recognition and sequence stratigraphic division of the Lower Carboniferous Dawuba Formation shales in Southwest Guizhou[J]. Bulletin of Geological Science and Technology,2025,44(4):288-303 doi: 10.19509/j.cnki.dzkq.tb20230546

Orbital cycle recognition and sequence stratigraphic division of the Lower Carboniferous Dawuba Formation shales in Southwest Guizhou

doi: 10.19509/j.cnki.dzkq.tb20230546
More Information
  • Author Bio:

    E-mail:1091924996@qq.com

  • Corresponding author: E-mail:jinsiding@cdut.edu.cn
  • Received Date: 26 Sep 2023
  • Accepted Date: 18 Jan 2024
  • Rev Recd Date: 24 Oct 2023
  • Available Online: 26 Feb 2024
  • <p>The Lower Carboniferous Dawuba Formation in Southwest Guizhou hosts a shale sequence with significant exploration potential. Current disagreements regarding its sequence division scheme and developmental mechanisms have somewhat hindered the understanding of the spatial distribution patterns of this high-quality shale.</p></sec><sec><title>Objective

    Therefore, this study focuses on the Lower Carboniferous Dawuba Formation shale (interval 14572466 m) from the Well Qian Shui Di-1 in Southwest Guizhou.

    Methods

    Utilizing the natural gamma ray (GR) log as a proxy indicator, methods including time series analysis, INPEFA (integrated noise-enhanced population evolutionary frequency analysis), and wavelet analysis were applied to conduct cyclostratigraphic and sequence stratigraphic investigations. The aim is to achieve a "quantitative" division of the sequence stratigraphy for this shale unit from an astronomical forcing perspective.

    Results

    The results demonstrate that the Dawuba Formation shale records clear astronomical periodic signals. COCO (correlation coefficient) analysis estimates an optimal average sedimentation rate of 16.4 cm/ka, corresponding to a sediment thickness of 66.42 m for the 405 ka long eccentricity cycle. Spectral analysis and astronomical tuning were performed on segmented GR data from the Well Qian Shui Di-1 (upper segment: 1457-1932 m; lower segment: 1932-2466 m). The optimal sedimentation rates for the upper and lower segments are 16.5 cm/ka and 11.2 cm/ka, respectively. The entire Dawuba Formation recorded 19 long eccentricity cycles, enabling the establishment of a "floating" astronomical time scale, which estimates a total duration of approximately 7.86 Ma for the formation. Furthermore, relative sea-level change curves were reconstructed using sedimentary noise modeling (DYNOT and ρ1 methods).Building upon the temporal framework established by cyclostratigraphy, and integrating relative sea-level extrema, INPEFA, and wavelet analysis results, six third-order sequence boundaries were identified, dividing the formation into five third-order sequences. The development of these third-order sequences is interpreted to be controlled by a stable approximately 1.2 Ma obliquity amplitude modulation cycle.

    Conclusion

    By applying cyclostratigraphy to the sequence division of the Dawuba Formation shale, this study explores the relationship between astronomical orbital parameters and relative sea-level change at different temporal scales, achieving the division of both third-order and fourth-order sequences. This methodology enables potential high-resolution (10000-year scale) chronostratigraphic correlation of marine shales. It provides a refined temporal framework for predicting intervals of high-quality source rock development within shale sequences, thereby offering crucial theoretical guidance for shale oil and gas exploration.

     

  • loading
  • [1]
    QIE W K,ALGEO T J,LUO G M,et al. Global events of the Late Paleozoic (Early Devonian to Middle Permian):A review[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2019,531:109259.
    [2]
    WU Y W,TIAN H,LI T F,et al. Enhanced terrestrial organic matter burial in the marine shales of Yangtze Platform during the Early Carboniferous interglacial interval[J]. Marine and Petroleum Geology,2021,129:105064. doi: 10.1016/j.marpetgeo.2021.105064
    [3]
    YAO L,QIE W K,LUO G M,et al. The TICE event:Perturbation of carbon-nitrogen cycles during the mid-Tournaisian (Early Carboniferous) greenhouse-icehouse transition[J]. Chemical Geology,2015,401:1-14. doi: 10.1016/j.chemgeo.2015.02.021
    [4]
    CROWELL J C. Pre-Mesozoic Ice ages:Their bearing on understanding the climate system[J]. Geology Society of America member,1999,192:106.
    [5]
    BRUCKSCHEN P,BRUHN F,VEIZER J,et al. 87Sr/86Sr isotopic evolution of Lower Carboniferous seawater:Dinantian of western Europe[J]. Sedimentary Geology,1995,100(1-4):63-81. doi: 10.1016/0037-0738(95)00103-4
    [6]
    杨博伟,石万忠,张晓明,等. 黔南地区下石炭统打屋坝组页岩气储层孔隙结构特征及含气性评价[J]. 岩性油气藏,2024,36(1):45-58. doi: 10.12108/yxyqc.20240105

    YANG B W,SHI W Z,ZHANG X M,et al. Pore structure characteristics and gas-bearing properties of shale gas reservoirs of Lower Carboniferous Dawuba Formation in southern Guizhou[J]. Lithologic Reservoirs,2024,36(1):45-58. (in Chinese with English abstract doi: 10.12108/yxyqc.20240105
    [7]
    卢树藩. 贵州石炭系打屋坝组页岩气成藏规律及勘探选区研究[D]. 贵阳:贵州大学,2019.

    LU S F. Study on shale gas accumulation law and exploration selection area of Carboniferous Dawuba Formation in Guizhou[D]. Guiyang:Guizhou University,2019. (in Chinese with English abstract
    [8]
    石巨业,金之钧,刘全有,等. 基于米兰科维奇理论的湖相细粒沉积岩高频层序定量划分[J]. 石油与天然气地质,2019,40(6):1205-1214. doi: 10.11743/ogg20190605

    SHI J Y,JIN Z J,LIU Q Y,et al. Quantitative classification of high-frequency sequences in fine-grained lacustrine sedimentary rocks based on Milankovitch theory[J]. Oil & Gas Geology,2019,40(6):1205-1214. (in Chinese with English abstract doi: 10.11743/ogg20190605
    [9]
    YAO X,HINNOV L A. Advances in characterizing the cyclostratigraphy of binary chert-mudstone lithologic successions,Permian (Roadian-lower Capitanian),Chaohu,Lower Yangtze,South China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2019,528:258-271.
    [10]
    ZHONG Y Y,WU H C,FAN J X,et al. Late Ordovician obliquity-forced glacio-eustasy recorded in the Yangtze Block,South China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2020,540:109520.
    [11]
    JIN S D,DENG H C,ZHU X,et al. Orbital control on cyclical organic matter accumulation in Early Silurian Longmaxi Formation shales[J]. Geoscience Frontiers,2020,11(2):533-545. doi: 10.1016/j.gsf.2019.06.005
    [12]
    LIU S B,JIN S D,LIU Y,et al. Astronomical forced sequence infill of Early Cambrian Qiongzhusi organic-rich shale of Sichuan Basin,South China[J]. Sedimentary Geology,2022,440:106261. doi: 10.1016/j.sedgeo.2022.106261
    [13]
    LU Y B,HUANG C J,JIANG S,et al. Cyclic late Katian through Hirnantian glacioeustasy and its control of the development of the organic-rich Wufeng and Longmaxi shales,South China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2019,526:96-109.
    [14]
    WU H C,FANG Q,HINNOV L A,et al. Astronomical time scale for the Paleozoic Era[J]. Earth-Science Reviews,2023,244:104510. doi: 10.1016/j.earscirev.2023.104510
    [15]
    VAIL P R,MITCHUM R M,THOMPSON S. Seismic stratigraphy and global changes of sea level:Part 3. Relative changes of sea level from coastal onlap[J]. Antimicrob Agents Chemother,1977,41(9):1859-1866.
    [16]
    CATUNEANU O,ABREU V,BHATTACHARYA J P,et al. Towards the standardization of sequence stratigraphy[J]. Earth-Science Reviews,2009,92(1/2):1-33.
    [17]
    JIN S D,CAO H Y,WANG H,et al. Orbital cyclicity in sedimentary sequence and climatic indications of C-O isotopes from Lower Cretaceous in Qingxi Sag,Jiuquan Basin,NW China[J]. Geoscience Frontiers,2019,10(2):467-479. doi: 10.1016/j.gsf.2018.01.005
    [18]
    ZECCHIN M. The architectural variability of small-scale cycles in shelf and ramp clastic systems:The controlling factors[J]. Earth-Science Reviews,2007,84(1/2):21-55.
    [19]
    VAIL P R. The stratigraphic signatures of tectonics,eustacy and sedimentology-an overview:Cycles and events in stratigraphy[J]. American Association of Petroleum Geologists Bulletin,1991,617-659.
    [20]
    SLATT R M,RODRIGUEZ N D. Comparative sequence stratigraphy and organic geochemistry of gas shales:Commonality or coincidence[J]. Journal of Natural Gas Science and Engineering,2012,8:68-84. doi: 10.1016/j.jngse.2012.01.008
    [21]
    ABOUELRESH M O,SLATT R M. Lithofacies and sequence stratigraphy of the Barnett shale in East-Central Fort Worth Basin,Texas[J]. AAPG Bulletin,2012,96(1):1-22. doi: 10.1306/04261110116
    [22]
    BUONOCUNTO F P,BRUNO D,FERRERI V,et al. Orbital cyclostratigraphy and sequence stratigraphy of Upper Cretaceous Platform carbonates at Monte Sant'Erasmo,southern Apennines,Italy[J]. Cretaceous Research,1999,20(1):81-95. doi: 10.1006/cres.1998.0138
    [23]
    STRASSER A H,HECKEL P H. Cyclostratigraphy concepts,definitions,and applications[J]. Newsletters on Stratigraphy,2007,42(2):75-114. doi: 10.1127/0078-0421/2006/0042-0075
    [24]
    SCHWARZACHER W. Cyclostratigraphy and the Milankovitch theory:Developments in sedimentology[J]. Sedimentary Geology,1993,52:1-225.
    [25]
    BOULILA S,GALBRUN B,MILLER K G,et al. On the origin of Cenozoic and Mesozoic "third-order" eustatic sequences[J]. Earth-Science Reviews,2011,109(3/4):94-112.
    [26]
    GONG Z,LI M S. Astrochronology of the Ediacaran Shuram carbon isotope excursion,Oman[J]. Earth and Planetary Science Letters,2020,547:116462. doi: 10.1016/j.jpgl.2020.116462
    [27]
    刘洋. 东海盆地西湖凹陷沉积记录的天文旋回响应[J]. 地质科技通报,2020,39(3):120-128.

    LIU Y. Response to astronomical forcing of sedimentary record in Xihu Depression,East China Sea Basin[J]. Bulletin of Geological Science and Technology,2020,39(3):120-128. (in Chinese with English abstract
    [28]
    卢树藩,何犇,杜胜江. 黔南代页1井下石炭统打屋坝组页岩气地质条件及勘探前景[J]. 中国地质调查,2016,3(4):6-11.

    LU S F,HE B,DU S J. Geological conditions and exploration prospect of shale gas in Dawuba Formation of Lower Carboniferous of Daiye-1 Well in southern Guizhou Province[J]. Geological Survey of China,2016,3(4):6-11. (in Chinese with English abstract.
    [29]
    郑逢赞,苑坤,单俊峰,等. 复杂构造区页岩含气性与保存条件评价:以黔西南垭紫罗断裂带打屋坝组为例[J]. 中国海上油气,2022,34(4):109-121. doi: 10.11935/j.issn.1673-1506.2022.04.010

    ZHENG F Z,YUAN K,SHAN J F,et al. Evaluation of shale gas content and preservation conditions in complex structural areas:A case study of Dawuba Formation of the Yaziluo fault zone in southwest Guizhou Province[J]. China Offshore Oil and Gas,2022,34(4):109-121. (in Chinese with English abstract doi: 10.11935/j.issn.1673-1506.2022.04.010
    [30]
    陈相霖,苑坤,林拓,等. 四川垭紫罗裂陷槽西北缘(黔水地1井)发现上古生界海相页岩气[J]. 中国地质,2021,48(2):661-662. doi: 10.12029/gc20210222

    CHEN X L,YUAN K,LIN T,et al. Discovery of shale gas within Upper Paleozoic marine facies by Qian Shuidi-1 Well in the northwest of Yaziluo rift trough,Sichuan Province[J]. Geology in China,2021,48(2):661-662. (in Chinese with English abstract doi: 10.12029/gc20210222
    [31]
    BAYET-GOLL A,SHARAFI M,HASANLOU M,et al. Reconstruction of Tournaisian-Viséan tectonic and climatically induced event histories of the Mobarak carbonate platform along depositional strike in the northeastern margin of Gondwana:Constraints from high-resolution cycle and sequence stratigraphy[J]. Marine and Petroleum Geology,2023,155:106356. doi: 10.1016/j.marpetgeo.2023.106356
    [32]
    YUAN K,HUANG W H,FANG X X,et al. Geochemical characteristics and sedimentary environment of the Middle Devonian organic-rich shales in the Northwest of Guizhong Depression,Southwest China[J]. China Geology,2020,3(4):567-574. doi: 10.31035/cg2020062
    [33]
    LAKIN J A,MARSHALL J E A,TROTH I,et al. Greenhouse to icehouse:A biostratigraphic review of latest Devonian-Mississippian glaciations and their global effects[J]. Geological Society,London,Special Publications,2016,423(1):439-464. doi: 10.1144/SP423.12
    [34]
    KAISER S I,BECKER R T,STEUBER T,et al. Climate-controlled mass extinctions,facies,and sea-level changes around the Devonian-Carboniferous boundary in the eastern Anti-Atlas (SE Morocco)[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2011,310(3/4):340-364.
    [35]
    吴祥和. 黔南泥盆−石炭系界线层层序和海退事件[J]. 地层学杂志,1986,10(3):204-211.

    WU X H. The sequence of Devonian-Carboniferous boundary beds and the regressive event of South Guizhou[J]. Journal of Stratigraphy,1986,10(3):204-211. (in Chinese with English abstract
    [36]
    苏慧敏,杨瑞东,程伟,等. 贵州西南部下石炭统打屋坝组页岩气成藏特征与有利区分析[J]. 贵州大学学报(自然科学版),2017,34(3):41-46.

    SU H M,YANG R D,CHENG W,et al. Shale gas accumulation characteristics and advantageous area analysis of Lower Carboniferous Dawuba Formation in southwestern Guizhou[J]. Journal of Guizhou University (Natural Sciences),2017,34(3):41-46. (in Chinese with English abstract
    [37]
    何犇. 贵州紫云地区下石炭统打屋坝组沉积环境研究[D]. 贵阳:贵州大学,2019.

    HE B. Study on sedimentary environment of Dawuba Formation of Lower Carboniferous in Ziyun area of Guizhou Province[D]. Guiyang:Guizhou University,2019. (in Chinese with English abstract
    [38]
    侯鸿飞,高联达,季强. 国际泥盆−石炭系界线研究介绍[J]. 地质论评,1985,31(1):87-93. doi: 10.3321/j.issn:0371-5736.1985.01.012

    HOU H F,GAO L D,JI Q. Introduction of international Devonian-Carboniferous boundary research[J]. Geological Review,1985,31(1):87-93. (in Chinese with English abstract doi: 10.3321/j.issn:0371-5736.1985.01.012
    [39]
    季强,魏家庸,王洪第,等. 贵州长顺睦化泥盆−石炭系界线层型研究的新进展:介绍大坡上泥盆−石炭系界线剖面[J]. 地质学报,1988,62(2):97-110.

    JI Q,WEI J Y,WANG H D,et al. New advances in the study on the Devonian-Carboniferous boundary stratotype in Muhua,Changshun,Guizhou:An introduction to the Dapoushang Devonian-Carboniferous boundary section[J]. Acta Geological Sinica,1988,62(2):97-110. (in Chinese with English abstract
    [40]
    季强,魏家庸,王洪第,等. 贵州长顺睦化泥盆−石炭系界线研究取得重大突破:介绍大坡上泥盆−石炭系界线剖面[J]. 中国地质,1988,15(3):28-30.

    JI Q,WEI J Y,WANG H D,et al. A great breakthrough has been made in the study of the Devonian-Carboniferous boundary in Muhua,Changshun,Guizhou:Introduction to the Devonian-Carboniferous boundary section on Dapo[J]. Chinese Geology,1988,15(3):28-30. (in Chinese)
    [41]
    沈阳,王训练,李玉坤,等. 黔南上司地区石炭系有孔虫:兼论华南维宪阶有孔虫生物地层序列[J]. 地学前缘,2020,27(6):213-233.

    SHEN Y,WANG X L,LI Y K,et al. Carboniferous foraminifers from the Shangsi area in southern Guizhou and the Visean foraminiferal succession in South China[J]. Earth Science Frontiers,2020,27(6):213-233. (in Chinese with English abstract
    [42]
    冯伟明,李嵘,赵瞻,等. 贵州威宁地区贵威地1井钻获石炭系页岩气和致密砂岩气[J]. 中国地质,2019,46(5):1241-1242. doi: 10.12029/gc20190525

    FENG W M,LI R,ZHAO Z,et al. The discovery of tight gas and shale gas in Carboniferous strata in Guiweidi 1 Well,Weining County,Guizhou Province[J]. Geology in China,2019,46(5):1241-1242. (in Chinese with English abstract doi: 10.12029/gc20190525
    [43]
    冯伟明,林家善,李嵘,等. 上扬子垭紫罗裂陷槽北西段GWD2井下石炭统旧司组暗色页岩发育特征及其对生烃中心的约束[J]. 中国地质,2024,51(6):2002-2016.

    FENG W M,LIN J S,LI R,et al. Development characteristics of Lower Carboniferous Jiusi Formation dark shale in Well GWD-2 and it's constraint to hydrocarbon generation center in the Northwest of Yadu Ziyun-Luodian aulacogen,the Upper Yangtze Platform[J]. Geology in China,2024,51(6):2002-2016. (in Chinese with English abstract
    [44]
    李治,冉彬,王明晗,等. 贵州紫云地区石炭系打屋坝组沉积相分析[J]. 河北地质大学学报,2017,40(2):1-9.

    LI Z,RAN B,WANG M H,et al. Sedimentary facies analysis of Carboniferous Dawuba Group in Ziyun district of Guizhou Province[J]. Journal of Hebei GEO University,2017,40(2):1-9. (in Chinese with English abstract
    [45]
    吴欣松,郭娟娟,黄永建,等. 松辽盆地晚白垩世古气候变化的测井替代指标[J]. 古地理学报,2011,13(1):103-110. doi: 10.7605/gdlxb.2011.01.010

    WU X S,GUO J J,HUANG Y J,et al. Well logging proxy of the Late Cretaceous palaeoclimate change in Songliao Basin[J]. Journal of Palaeogeography,2011,13(1):103-110. (in Chinese with English abstract doi: 10.7605/gdlxb.2011.01.010
    [46]
    陈书平,王毅,周子勇,等. 塔里木盆地中−下寒武统自然伽马测井曲线周期及其在沉积层序划分中的意义[J]. 地质通报,2020,39(7):943-949. doi: 10.12097/gbc.dztb-39-7-943

    CHEN S P,WANG Y,ZHOU Z Y,et al. The cycles filtered from natural gamma-ray logging curves of Lower-Middle Cambrian in the Tarim Basin and their significance in sedimentary sequence division[J]. Geological Bulletin of China,2020,39(7):943-949. (in Chinese with English abstract doi: 10.12097/gbc.dztb-39-7-943
    [47]
    SCHNYDER J,RUFFELL A,DECONINCK J F,et al. Conjunctive use of spectral gamma-ray logs and clay mineralogy in defining Late Jurassic-Early Cretaceous palaeoclimate change (Dorset,U. K. )[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2006,229(4):303-320.
    [48]
    李培廉,盛蔚. 米氏旋回在平湖油气田高分辨率层序地层分析中的应用[J]. 中国海上油气(地质),1994(3):171-177.

    LI P L,SHENG W. Application of milankovitch cycle hypothesis in the high-resolution sequence stratigraphy study of Pinghu oil field[J]. China Offshore Oil and Gas (Geology),1994(3):171-177. (in Chinese with English abstract
    [49]
    李庆谋. 测井曲线Milankovitch周期分析与应用[J]. 地球物理学报,1996,39(5):699-704. doi: 10.3321/j.issn:0001-5733.1996.05.013

    LI Q M. The analysis and application of Milankovitch cycles by logging data[J]. Chinese Journal of Geophysics,1996,39(5):699-704. (in Chinese) doi: 10.3321/j.issn:0001-5733.1996.05.013
    [50]
    吴怀春,张世红,黄清华. 中国东北松辽盆地晚白垩世青山口组浮动天文年代标尺的建立[J]. 地学前缘,2008,15(4):159-169. doi: 10.3321/j.issn:1005-2321.2008.04.018

    WU H C,ZHANG S H,HUANG Q H. Establishment of floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation in the Songliao Basin of Northeast China[J]. Earth Science Frontiers,2008,15(4):159-169. (in Chinese with English abstract doi: 10.3321/j.issn:1005-2321.2008.04.018
    [51]
    薛欢欢,李景哲,李恕军,等. INPEFA在高分辨率层序地层研究中的应用:以鄂尔多斯盆地油房庄地区长4+5油组为例[J]. 中国海洋大学学报(自然科学版),2015,45(7):101-106.

    XUE H H,LI J Z,LI S J,et al. Application of INPEFA technique to research high resolution sequence stratigraphy:As an example of Youfangzhuang area Chang 4+5 in Ordos Basin[J]. Periodical of Ocean University of China,2015,45(7):101-106. (in Chinese with English abstract
    [52]
    周亚伟,杜玉洪,谢俊,等. INPEFA技术与小波变换在层序地层划分中的应用与对比:以饶阳凹陷大王庄地区东营组三段为例[J]. 中国科技论文,2021,16(5):494-501. doi: 10.3969/j.issn.2095-2783.2021.05.007

    ZHOU Y W,DU Y H,XIE J,et al. Application and comparison of INPEFA technique and wavelet transform in sequence stratigraphic division:A case study in the Third Member of Dongying Formation in Dawangzhuang area,Raoyang Sag[J]. China Sciencepaper,2021,16(5):494-501. (in Chinese with English abstract doi: 10.3969/j.issn.2095-2783.2021.05.007
    [53]
    DEJONG M,NIO S D,SMITH D,et al. Subsurface correlation in the Upper Carboniferous (Westphalian) of the Anglo-Dutch Basin using the climate stratigraphic approach[J]. First Break,2007,25(12):49-59.
    [54]
    DJINNIO S,BROUWER J H,SMITH D,et al. Spectral trend attribute analysis:Applications in the stratigraphic analysis of wireline logs[J]. First Break,2005,23(4):71-75.
    [55]
    路顺行,张红贞,孟恩,等. 运用INPEFA技术开展层序地层研究[J]. 石油地球物理勘探,2007,42(6):703-708. doi: 10.3321/j.issn:1000-7210.2007.06.017

    LU S X,ZHANG H Z,MENG E,et al. Application of INPEFA technique to carry out sequence-stratigraphic study[J]. Oil Geophysical Prospecting,2007,42(6):703-708. (in Chinese with English abstract doi: 10.3321/j.issn:1000-7210.2007.06.017
    [56]
    周建. 小波变换在兴城地区营四段层序地层划分研究中的应用[D]. 黑龙江 大庆:东北石油大学,2014.

    ZHOU J. Application of wavelet transform in studies of sequence stratigraphy of K1y4 of Xingcheng[D]. Daqing,Heilongjiang:Northeast Petroleum University,2014. (in Chinese with English abstract
    [57]
    MEYERS P A,ISHIWATARI R. Lacustrine organic geochemistry-an overview of indicators of organic matter sources and diagenesis in lake sediments[J]. Organic Geochemistry,1993,20(7):867-900. doi: 10.1016/0146-6380(93)90100-P
    [58]
    赵伟,邱隆伟,姜在兴,等. 小波分析在高精度层序单元划分中的应用[J]. 中国石油大学学报(自然科学版),2009,33(2):18-22. doi: 10.3321/j.issn:1673-5005.2009.02.004

    ZHAO W,QIU L W,JIANG Z X,et al. Application of wavelet analysis in high-resolution sequence unit division[J]. Journal of China University of Petroleum (Edition of Natural Science),2009,33(2):18-22. (in Chinese with English abstract doi: 10.3321/j.issn:1673-5005.2009.02.004
    [59]
    SCHWARZACHER W. Sedimentation models and quantitative stratigraphy[M]. Amsterdam,New York:Elsevier Scientific Pub.,1975.
    [60]
    THOMSON D J. Spectrum estimation and harmonic analysis[J]. Proceedings of the IEEE,1982,70(9):1055-1096. doi: 10.1109/PROC.1982.12433
    [61]
    宋翠玉,吕大炜. 米兰科维奇旋回时间序列分析法研究进展[J]. 沉积学报,2022,40(2):380-395.

    SONG C Y,LYU D W. Advances in time series analysis methods for milankovitch cycles[J]. Acta Sedimentologica Sinica,2022,40(2):380-395. (in Chinese with English abstract
    [62]
    吴怀春,张世红,冯庆来,等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学,2011,36(3):409-428.

    WU H C,ZHANG S H,FENG Q L,et al. Theoretical basis,research advancement and prospects of cyclostratigraphy[J]. Earth Science,2011,36(3):409-428. (in Chinese with English abstract
    [63]
    黄春菊. 旋回地层学和天文年代学及其在中生代的研究现状[J]. 地学前缘,2014,21(2):48-66.

    HUANG C J. The current status of cyclostratigraphy and astrochronology in the Mesozoic[J]. Earth Science Frontiers,2014,21(2):48-66. (in Chinese with English abstract
    [64]
    HINNOV L A. New perspectives on orbitally forced stratigraphy[J]. Annual Review of Earth and Planetary Sciences,2000,28:419-475. doi: 10.1146/annurev.earth.28.1.419
    [65]
    WEEDON G P. Time-series analysis and cyclostratigraphy[M]. Cambridge,UK:Cambridge University Press,2003.
    [66]
    LI M S,HINNOV L A,HUANG C J,et al. Sedimentary noise and sea levels linked to land-ocean water exchange and obliquity forcing[J]. Nature Communications,2018,9(1):1004. doi: 10.1038/s41467-018-03454-y
    [67]
    王蒙. 陆相盆地古湖平面变化的重建与天文驱动力:以北美上三叠统纽瓦克盆地和中国东部古近系盆地为例[D]. 武汉:中国地质大学(武汉),2021.

    WANG M. Reconstruction and astronomical driving forces of paleolake level change in continental basins:A case study of Upper Triassic Newark Basin in North America and Paleogene Basin in East China[D]. Wuhan:China University of Geosciences (Wuhan),2021. (in Chinese with English abstract
    [68]
    CAO H Y,JIN S D,SUN M,et al. Astronomical forcing of sedimentary cycles of Late Eocene a)Liushagang Formation in the Bailian Sag,Fushan Depression,Beibuwan Basin,South China b)Sea[J]. Journal of Central South University,2016,23:1427-1438. doi: 10.1007/s11771-016-3195-9
    [69]
    汪新伟,郭彤楼,沃玉进,等. 垭紫罗断裂带深部构造分段特征及构造变换作用[J]. 石油与天然气地质,2013,34(2):220-228. doi: 10.11743/ogg20130213

    WANG X W,GUO T L,WO Y J,et al. Characteristics of deep structural segmentation and transformation of the Yaziluo fault zone[J]. Oil & Gas Geology,2013,34(2):220-228. (in Chinese with English abstract doi: 10.11743/ogg20130213
    [70]
    张浩东,邹长春,彭诚,等. 基于测井频谱分析的松科二井登娄库组地层沉积速率研究[J]. 地球学报,2022,43(5):654-664. doi: 10.3975/cagsb.2022.061602

    ZHANG H D,ZOU C C,PENG C,et al. A study on the sedimentation rate of the Denglouku Formation from CCSD SK-2,based on logging spectral analysis[J]. Acta Geoscientica Sinica,2022,43(5):654-664. (in Chinese with English abstract doi: 10.3975/cagsb.2022.061602
    [71]
    WALTHAM D. Milankovitch period uncertainties and their impact on cyclostratigraphy[J]. Journal of Sedimentary Research,2015,85(8):990-998. doi: 10.2110/jsr.2015.66
    [72]
    卢树藩,陈祎,罗香建,等. 贵州石炭系黑色页岩层系沉积特征及分布规律研究[J]. 沉积学报,2021,39(3):672-685.

    LU S F,CHEN Y,LUO X J,et al. Sedimentary characteristics and distribution of the Carboniferous black shale in Guizhou Province[J]. Acta Sedimentologica Sinica,2021,39(3):672-685. (in Chinese with English abstract
    [73]
    王向东,胡科毅,郄文昆,等. 中国石炭纪综合地层和时间框架[J]. 中国科学 (地球科学),2019,49(1):139-159. doi: 10.1360/N072017-00311

    WANG X D,HU K Y,QIE W K,et al. Carboniferous integrative stratigraphy and timescale of China[J]. Scientia Sinica (Terrae),2019,49(1):139-159. (in Chinese with English abstract doi: 10.1360/N072017-00311
    [74]
    李莹,王向东,胡科毅,等. 中国石炭纪岩石地层划分和对比[J]. 地层学杂志,2021,45(3):303-318.

    LI Y,WANG X D,HU K Y,et al. Lithostratigraphic subdivision and correlation of the Carboniferous in China[J]. Journal of Stratigraphy,2021,45(3):303-318. (in Chinese with English abstract
    [75]
    LI M S,KUMP L R,HINNOV L A,et al. Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing[J]. Earth and Planetary Science Letters,2018,501:165-179. doi: 10.1016/j.jpgl.2018.08.041
    [76]
    LIANG Y T,TANG X,ZHANG J C,et al. Origin of Lower Carboniferous cherts in southern Guizhou,South China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2022,590:110863.
    [77]
    CRAMPTON J S,MEYERS S R,COOPER R A,et al. Pacing of Paleozoic macroevolutionary rates by Milankovitch grand cycles[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(22):5686-5691.
    [78]
    赵玉光,许放松,刘宝珺. 上扬子台地西缘峨眉地区三叠纪高频层序与海平面振荡研究[J]. 岩相古地理,1996(01):1-18.

    ZHAO Y G,XU F S,LIU B J. High-frequence sequences and sea-level oscillations in the Emei area on the western margin of the Upper Yangtze Platform[J]. Sedimentary Geology and Tethyan Geology,1996(01):1-18. (in Chinese with English abstract
    [79]
    王必金,包汉勇,刘皓天,等. 川东红星地区吴家坪组富有机质页岩特征与发育控制因素[J]. 地质科技通报,2023,42(5):70-81.

    WANG B J,BAO H Y,LIU H T,et al. Characteristics and controlling factors of the organic-rich shale in the Wujiaping Formation of the Hongxing area,eastern Sichuan Basin[J]. Bulletin of Geological Science and Technology,2023,42(5):70-81. (in Chinese with English abstract
    [80]
    张蕊. 塔里木盆地钻孔记录的中更新世以来轨道与亚轨道尺度上的气候变化[D]. 武汉:中国地质大学(武汉),2020.

    ZHANG R. Climate changes on orbital and suborbital scales recorded by boreholes in Tarim Basin since the Middle Pleistocene[D]. Wuhan:China University of Geosciences (Wuhan),2020. (in Chinese with English abstract
    [81]
    石巨业,金之钧,刘全有,等. 天文旋回在页岩油勘探及富有机质页岩地层等时对比中的应用[J]. 地学前缘,2023,30(4):142-151.

    SHI J Y,JIN Z J,LIU Q Y,et al. Application of astronomical cycles in shale oil exploration and in high-precision stratigraphic isochronous comparison of organic-rich fine-grain sedimentary rocks[J]. Earth Science Frontiers,2023,30(4):142-151. (in Chinese with English abstract
    [82]
    史彪,吴丰,李树新,等. 海陆过渡相优质页岩测井识别:以鄂尔多斯盆地大宁−吉县地区山2段为例[J]. 地质科技通报,2023,42(2):115-126.

    SHI B,WU F,LI S X,et al. Logging identification of high-quality shale of the marine-continent transitional facies:An example of the Shan 2 Member of the Daning-Jixian area in the Ordos Basin[J]. Bulletin of Geological Science and Technology,2023,42(2):115-126. (in Chinese with English abstract
    [83]
    徐健,德勒恰提·加娜塔依. 米兰科维奇旋回识别与天文标尺的建立:以莫索湾地区莫21井三工河组一段为例[J]. 地质科技通报,2021,40(2):197-207.

    XU J,DELEQIATI J. Identification of Milankovich cycle and establishment of astronomical ruler:A case study from the First Section of the Sangonghe Formation of Well Mo21 in Mosuowan area[J]. Bulletin of Geological Science and Technology,2021,40(2):197-207. (in Chinese with English abstract
    [84]
    WEI R,ZHANG R,LI M S,et al. Obliquity forcing of lake-level changes and organic carbon burial during the Late Paleozoic Ice Age[J]. Global and Planetary Change,2023,223:104092. doi: 10.1016/j.gloplacha.2023.104092
    [85]
    FANG Q,WU H C,WANG X L,et al. Astronomical cycles in the Serpukhovian-Moscovian (Carboniferous) marine sequence,South China and their implications for geochronology and icehouse dynamics[J]. Journal of Asian Earth Sciences,2018,156:302-315. doi: 10.1016/j.jseaes.2018.02.001
    [86]
    HECKEL P H,ALEKSEEV A S,BARRICK J E,et al. Choice of conodont Idiognathodus simulator (sensu stricto) as the event marker for the base of the global Gzhelian Stage (Upper Pennsylvanian Series,Carboniferous System)[J]. Episodes,2008,31(3):319-325. doi: 10.18814/epiiugs/2008/v31i3/006
    [87]
    HECKEL P H,ALEKSEEV A S,BARRICK J E,et al. Cyclothem ["digital"] correlation and biostratigraphy across the global Moscovian-Kasimovian-Gzhelian stage boundary interval (Middle-Upper Pennsylvanian) in North America and eastern Europe[J]. Geology,2007,35(7):607. doi: 10.1130/G23564A.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(419) PDF Downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return