Citation: | Wu Shenghui, Tong Defu, Su Aijun, Guo Bing, Wang Jian, Tan Lei. Deformation mechanism and medium- and long-term landslide prediction model of Xinpu Xia'ertai landslide[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 35-44. doi: 10.19509/j.cnki.dzkq.2022.0235 |
Due to the influence of reservoir water level, rainfall and geological conditions, the Three Gorges Reservoir area is a landslide hazard-prone area, and the landslide genesis mechanism and evolution process are also extremely complex.By taking the Xinpu Xia'ertai landslide as an example, this paper summarizes and analyses the resurgence law of large palaeo-landslides based on multiple sources of data, such as GPS displacement monitoring data, fracture data, rainfall and reservoir water level, and through a geotechnical creep compression model. The paper also verifies the mechanism of fracture formation on the trailing edge of the displaced landslide.The results show the following: ①Rainfall is the dominant factor of landslide deformation. Landslide deformation causes the landslide body to produce cracks and form rainfall infiltration channels, which intensifies rock fragmentation and weak layer mudification and reduces landslide stability; besides, concentrated and continuous rainfall can destabilize landslides. ②By comparing the predicted value of the model with the surface monitoring data, it is feasible to take annual rainfall as the controlling factor in the medium- and long-term landslide prediction model and help to improve the prediction accuracy of landslides. ③Pushing landslide trailing edge cracks consist of landslide pushing displacement and geotechnical body compression. In this paper, the compression creep model is introduced to calculate the crack width and compare it with the monitoring data. This shows that the compression creep model is suitable for this type of slope, and the average deformation modulus of the geotechnical body is obtained by applying the backpropagation of the geotechnical body creep compression model. Thus, we judge the degree of rock fragmentation, which provides a reference for landslide stability analysis and subsequent engineering management.
[1] |
王忠福, 李冬冬, 万天同. 基于滑坡变形分区的锁固型滑坡稳定性分析研究[J]. 华北水利水电大学学报: 自然科学版, 2018, 39(6): 35-40. doi: 10.3969/j.issn.1002-5634.2018.06.007
Wang Z F, Li D D, Wan T T. Stability analysis of landslide based on landslide deformation partition with retaining wall[J]. Journal of North China University of Water Resources and Electric Power: Natural Science Edition, 2018, 39(6): 35-40(in Chinese with English abstract). doi: 10.3969/j.issn.1002-5634.2018.06.007
|
[2] |
Tang H M, Wasowski J, Juang C H. Geohazards in the Three Gorges Reservoir area, China: Lessons learned from decades of research[J]. Engineering Geology, 2019, 261(10): 5267.
|
[3] |
Gong W P, Juang C H, Wasowski J. Geohazards and human settlements: Lessons learned from multiple relocation events in Badong, China: Engineering geologist's perspective[J]. Engineering Geology, 2021, 285(10): 6051.
|
[4] |
Petley D N. Global patterns of loss of life from landslides[J]. Geology, 2012, 40(10): 927-930. doi: 10.1130/G33217.1
|
[5] |
Lin Q, Wang Y. Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016[J]. Landslides, 2018, 15(12): 2357-2372. doi: 10.1007/s10346-018-1037-6
|
[6] |
Tong D F, Su A J, Tan F, et al. Genetic mechanism of water-rich landslide considering antecedent rain fails: A case study of Pingyikou landslide in Three Gorges Reservoir area[J/OL]. Journal of Earth Science: 1-27[2022-11-11]. http://kns.cnki.net/kcms/detail/42.1788.P.20220805.1445.006.html.
|
[7] |
陈洪凯, 唐红梅, 艾南山. 三峡库区的新构造应力场及其对库岸滑坡滑动优势方向的影响[J]. 地理研究, 1997, 16(4): 16-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ704.002.htm
Chen H K, Tang H M, Ai N S. Neotectonic strese field and its effects on the dominant sliding direction of landslides in the Three Gorges Reservoir region[J]. Geographical Research, 1997, 16(4): 16-23(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ704.002.htm
|
[8] |
冯振, 殷跃平, 李滨, 等. 重庆武隆鸡尾山滑坡视向滑动机制分析[J]. 岩土力学, 2012, 33(9): 2704-2712. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201209027.htm
Feng Z, Yin Y P, Li B, et al. Mechanism analysis of apparent dip landslide of Jiweishan in Wulong, Chongqing[J]. Rock and Soil Mechanics, 2012, 33(9): 2704-2712(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201209027.htm
|
[9] |
张帆, 王孔伟, 罗先启, 等. 长江三峡库区构造特征与滑坡分布关系[J]. 地质学报, 2007, 81(1): 38-46. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200701005.htm
Zhang F, Wang K W, Luo X Q, et al. Relationship between landslides and structural featurein Three Gorges Reservoir[J]. Acta Geologica Sinica, 2007, 81(1): 38-46(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200701005.htm
|
[10] |
李长冬, 龙晶晶, 姜茜慧, 等. 水库滑坡成因机制研究进展与展望[J]. 地质科技通报, 2020, 39(1): 67-77. doi: 10.19509/j.cnki.dzkq.2020.0108
Li C D, Long J J, Jiang X H, et al. Advance and prospect of formation mechanism for reservoir landslides[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 67-77(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0108
|
[11] |
唐辉明, 鲁莎. 三峡库区黄土坡滑坡滑带空间分布特征研究[J]. 工程地质学报, 2018, 26(1): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201801014.htm
Tang H M, Lu S. Research on the spatial distribution of slip zone of huangtupo landslide in Three Gorges Reservoir area[J]. Journal of Engineering Geology, 2018, 26(1): 129-136(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201801014.htm
|
[12] |
谭淋耘, 黄润秋, 裴向军. 库水位下降诱发的特大型顺层岩质滑坡变形特征与诱发机制[J]. 岩石力学与工程学报, 2021, 40(2): 302-314. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202102007.htm
Tan L Y, Hang R Q, Pei X J. Deformation characteristics and inducing mechanisms of a super-large bedding rock landslide triggered by reservoir water level decline in Three Gorges Reservoir area[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(2): 302-314(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202102007.htm
|
[13] |
仝德富, 谭飞, 苏爱军, 等. 基于多源数据的谭家湾滑坡变形机制及稳定性评价[J]. 地质科技通报, 2021, 40(4): 162-170. doi: 10.19509/j.cnki.dzkq.2021.0432
Tong D F, Tan F, Su A J, et al. Deformation mechanism and stability evaluation of Tanjiawan landslide based on multi-source data[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 162-170 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0432
|
[14] |
张永双, 吴瑞安, 任三绍. 降雨优势入渗通道对古滑坡复活的影响[J]. 岩石力学与工程学报, 2021, 40(4): 777-789. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104011.htm
Zhang Y S, Wu R A, Ren S S. Influence of rainfall preponderance infiltration path on reactivation of ancient landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 777-789(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104011.htm
|
[15] |
李晓, 张年学, 盛祝平, 等. 武隆鸡尾山滑坡发生机制与裂缝成因分析[J]. 岩石力学与工程学报, 2020, 39(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202001001.htm
Li X, Zhang N X, Sheng Z P, et al. Sliding mechanisms and fracture genesis of Jiweishan landslide in Wulong[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(1): 1-12(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202001001.htm
|