Volume 42 Issue 3
May  2023
Turn off MathJax
Article Contents
Chen Shupeng, Cai Suyang, Liang Yun, Hu Qianze, Xiao Qilin. Pore characteristics and its controlling factors in the Middle Jurassic tight sandstone reservoirs of the Shengbei Sag, Turpan-Hami Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 189-200. doi: 10.19509/j.cnki.dzkq.2022.0129
Citation: Chen Shupeng, Cai Suyang, Liang Yun, Hu Qianze, Xiao Qilin. Pore characteristics and its controlling factors in the Middle Jurassic tight sandstone reservoirs of the Shengbei Sag, Turpan-Hami Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 189-200. doi: 10.19509/j.cnki.dzkq.2022.0129

Pore characteristics and its controlling factors in the Middle Jurassic tight sandstone reservoirs of the Shengbei Sag, Turpan-Hami Basin

doi: 10.19509/j.cnki.dzkq.2022.0129
  • Received Date: 21 May 2022
  • The Middle Jurassic sandstone reservoirs of the Turpan-Hami Basin are the main targets for unconventional tight oil and gas exploration and development.To better understanding the main controlling factors of pore characteristics in the Middle Jurassic tight sandstones of the Shengbei Sag, Turpan-Hami Basin, a comprehensive investigation referring to lithology, diagenesis, physical properties, and pore structure was conducted on samples obtained from 8 wells. The results indicate that the Middle Jurassic tight sandstone reservoir characterized by low porosity and ultralow permeability primarily contains feldspar lithic sandstones, followed by lithic sandstones.These sandstone reservoirs suffered strong compaction and complicated mineral cementation, replacement, and dissolution. These sandstone reservoirs are dominated by the secondary pores generated by feldspar dissolution, with some residual interparticle pores, quartz dissolution pores, clay mineral interlayer pores, and microfractures.Pore throat of 5-50 nm most widely appears in these reservoirs, while the porosity and permeability of these reservoirs mainly depend on the pore throats of 50 nm-1 μm and 100-800 μm, as indicated by the good positive correlations between pore throats and volumes. Both porosity and permeability correlate positively with the quartz and feldspar contents but negatively with the clay and carbonate contents. These correlations were supposed to be caused by two factors: ①strong compaction led to the loss of most interparticle pores but kept the residual interparticle pores associated with rigid quartz, and caused the occurrence of microfractures and dissolution pores within the quartz; the migration of hydrocarbon fluids containing organic acids into the Middle Jurassic reservoirs resulted in the significant dissolution of feldspar and generation of secondary dissolution pores. This process promoted theoccurrence of pore throats of 50 nm-1 μm and 100-800 μm and improved the porosity and permeability. ②The primary interparticle pores and secondary microfractures were filled with authigenic clay or carbonate cement; the replacement of feldspar by calcite disturbed the positive effects of feldspar dissolution on the porosity and permeability, which reduced the occurrence of 50 nm-1 μm and 100-800 μm pore throats and the physical properties of these reservoirs.Therefore, the occurrence of pores was closely related to the early sedimentary environments and the later diagenesis after deposition.More importantly, mechanical compaction, feldspar dissolution, and authigenic mineral cementation played crucial roles in regulating the occurrence of pores and the physical properties of these sandstone reservoirs in the study area.This study should be helpful in predicting the favorable exploration areas of tight oil and gas in the Middle Jurassic sandstone reservoirs in the Shengbei Sag, Turpan-Hami Basin.

     

  • loading
  • [1]
    邹才能, 张光亚, 陶士振, 等. 全球油气勘探领域地质特征、重大发现及非常规石油地质[J]. 石油勘探与开发, 2010, 37(2): 129-145. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002002.htm

    Zou C N, Zhang G Y, Tao S Z, et al. Geological features, major discoveries and unconventional petroleum geology in the global petroleum exploration[J]. Petroleum Exploration and Development, 2010, 37(2): 129-145(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002002.htm
    [2]
    邹才能, 陶士振, 侯连华, 等. 非常规油气地质[M]. 北京: 地质出版社, 2011.

    Zou C N, Tao S Z, Hou L H, et al. Unconventional petroleum geology[M]. Beijing: Geological Publishing House, 2011(in Chinese).
    [3]
    邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2): 173-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201202002.htm

    Zou C N, Zhu R K, Wu S T, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173-187(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201202002.htm
    [4]
    Nelson P H. Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bulletin, 2009, 93(3): 329-340. doi: 10.1306/10240808059
    [5]
    Jiang Z X, Li Z, Li F, et al. Tight sandstone gas accumulation mechanism and development models[J]. Petroleum Science, 2015, 12: 587-605. doi: 10.1007/s12182-015-0061-6
    [6]
    Zhu S F, Zhu X M, Jia Y, et al. Diagenetic alteration, pore-throat network, and reservoir quality of tight gas sandstone reservoirs: A case study of the Upper Paleozoic sequence in the northern Tianhuan Depression in the Ordos Basin, China[J]. AAPG Bulletin, 2020, 104(11): 2297-2324. doi: 10.1306/08151919058
    [7]
    Spencer C W. Geologic aspects of tight gas reservoirs in the Rocky Mountain region[J]. Journal of Petroleum Technology, 1985, 37(7): 1308-1314. doi: 10.2118/11647-PA
    [8]
    Surdam R C. A new paradigm for gas exploration in anomalously pressured "tight-gas sands" in the Rocky Mountain Laramide basins[C]//Surdam R C. Seals, traps, and the petroleum system: AAPG Memoir 67. Tulsa: American Association of Petroleum Geologists, 1997: 283-298.
    [9]
    张哨楠. 致密天然气砂岩储层: 成因和讨论[J]. 石油与天然气地质, 2008, 29(1): 1-10, 18. doi: 10.3321/j.issn:0253-9985.2008.01.001

    Zhang X N. Tight sandstone gas reservoirs: Their origin and discussion[J]. Oil and Gas Geology, 2008, 29(1): 1-10, 18(in Chinese with English abstract). doi: 10.3321/j.issn:0253-9985.2008.01.001
    [10]
    王芙蓉, 何生, 何治亮, 等. 准噶尔盆地腹部地区深层砂岩储层孔隙特征研究[J]. 石油实验地质, 2010, 32(6): 547-552. doi: 10.3969/j.issn.1001-6112.2010.06.006

    Wang F R, He S, He Z L, et al. The reservoir characteristic of deeply-buried sandstone in the center of Junggar Basin[J]. Petroleum Geology and Experiment, 2010, 32(6): 547-552(in Chinese with English abstract). doi: 10.3969/j.issn.1001-6112.2010.06.006
    [11]
    Zou C N, Zhu R K, Liu K Y, et al. Tight gas sandstone reservoirs in China: Characteristics and recognition criteria[J]. Journal of Petroleum Science and Engineering, 2012, 88/89: 82-91. doi: 10.1016/j.petrol.2012.02.001
    [12]
    朱如凯, 吴松涛, 苏玲, 等. 中国致密储层孔隙结构表征需注意的问题及未来发展方向[J]. 石油学报, 2016, 37(11): 1323-1336. doi: 10.7623/syxb201611001

    Zhu R K, Wu S T, Su L, et al. Problems and future works of porous texture characterization of tight reservoirs in China[J]. Acta Petrolei Sinica, 2016, 37(11): 1323-1336(in Chinese with English abstract). doi: 10.7623/syxb201611001
    [13]
    高文杰, 李贤庆, 张光武, 等. 塔里木盆地库车坳陷克拉苏构造带深层致密砂岩气藏储层致密化与成藏关系[J]. 天然气地球科学, 2018, 29(2): 226-235. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201802008.htm

    Gao W J, Li X Q, Zhang G W, et al. The relationship research between densification of reservoir and accumulation of the deep tight sandstone gas reservoirs of the Kelasu tectonic zone in Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2018, 29(2): 226-235(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201802008.htm
    [14]
    张莉, 舒志国, 何生, 等. 川东建南地区须家河组储层特征及其差异演化过程[J]. 地球科学, 2021, 46(9): 3139-3156. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202109008.htm

    Zhang L, Shu Z G, He S, et al. Reservoir characteristics and differential evolution process of Xujiahe Formation in Jiannan area, East Sichuan[J]. Earth Science, 2021, 46(9): 3139-3156(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202109008.htm
    [15]
    罗静兰, 李弛, 雷川, 等. 碎屑岩储集层成岩作用研究进展与热点问题讨论[J]. 古地理学报, 2020, 22(6): 1021-1040. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202006001.htm

    Luo J L, Li C, Lei C, et al. Discussion on research advances and hot issues in diagenesis of clastic-rock reservoirs[J]. Journal of Palaeogeography, 2020, 22(6): 1021-1040(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202006001.htm
    [16]
    宫雪, 胡新友, 李文厚, 等. 成岩作用对储层致密化的影响差异及定量表述: 以苏里格气田苏77区块致密砂岩为例[J]. 沉积学报, 2020, 38(6): 1338-1348. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202006018.htm

    Gong X, Hu X Y, Li W H, et al. Different influences and quantitative description of effect of diagenesis on reservoir densification: Case study of tight sandstone in Su77 block, Sulige Gas Field[J]. Acta Sedimentologica Sinica, 2020, 38(6): 1338-1348(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202006018.htm
    [17]
    徐国盛, 崔恒远, 刘勇, 等. 东海盆地西湖凹陷古近系花港组砂岩储层致密化与油气充注关系[J]. 地质科技通报, 2020, 39(3): 20-29. doi: 10.19509/j.cnki.dzkq.2020.0303

    Xu G S, Cui H Y, Liu Y, et al. Relationship between sandstone reservoirs densification and hydrocarbon charging in the Paleogene Huagang Formation of Xihu Depression, East China Sea Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 20-29(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0303
    [18]
    张铜耀, 郝鹏. 渤中凹陷深层特低孔特低渗砂砾岩储层储集空间精细表征[J]. 地质科技通报, 2020, 39(4): 117-124. doi: 10.19509/j.cnki.dzkq.2020.0415

    Zhang T Y, Hao P. Fine characterization of the reservoir space in deep ultra-low porosity and ultra-low permeability glutenite in Bozhong Sag[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 117-124 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0415
    [19]
    Qian W D, Yin T J, Zhang C M, et al. Diagenetic evolution of the Oligocene Huagang Formation in Xihu Sag, the East China Sea Shelf Basin[J]. Scientific Reports, 2020, 10(1): 1-16. http://www.socolar.com/Article/Index?aid=200259935745&jid=200000073720
    [20]
    李智, 叶加仁, 曹强, 等. 鄂尔多斯盆地杭锦旗独贵加汗区带下石盒子组储层特征及孔隙演化[J]. 地质科技通报, 2021, 40(4): 49-60. doi: 10.19509/j.cnki.dzkq.2021.0404

    Li Z, Ye J R, Cao Q, et al. Reservoir characteristics and pore evolution of the Lower Shihezi Formation in Duguijiahan zone, Hangjinqi area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 49-60(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0404
    [21]
    苟红光, 张品, 佘家朝, 等. 吐哈盆地石油地质条件、资源潜力及勘探方向[J]. 海相油气地质, 2019, 24(2): 85-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201902009.htm

    Gou H G, Zhang P, She J C, et al. Petroleum geological conditions, resource potential and exploration direction in Turpan-Hami Basin[J]. Marine Origin Petroleum Geology, 2019, 24(2): 85-96(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201902009.htm
    [22]
    袁明生, 梁世君, 燕列灿, 等. 吐哈油气地质与勘探实践[M]. 北京: 石油工业出版社, 2002.

    Yuan M S, Liang S J, Yan L C, et al. Tuha petroleum geology and exploration practice[M]. Beijing: Petroleum Industry Press, 2002(in Chinese).
    [23]
    翟亚梅, 余水生, 张志更, 等. 吐哈盆地胜北洼陷致密砂岩气勘探潜力与方向[J]. 新疆石油天然气, 2012, 8(4): 7-11, 5. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSY201204001.htm

    Zhai Y M, Yu S S, Zhang Z G, et al. The exploration potential and direction of tight sandstone gas in Shengbei Sag of Tuha Basin[J]. Xinjiang Oil and Gas, 2012, 8(4): 7-11, 5(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJSY201204001.htm
    [24]
    杨占龙, 陈启林, 郭精义. 胜北洼陷岩性油气藏成藏条件特殊性分析[J]. 天然气地球科学, 2005, 16(2): 181-185, 189. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200502009.htm

    Yang Z L, Chen Q L, Guo J Y. The particularity analysis of stratigraphy reservoirs in Shengbei Depression[J]. Natural Gas Geoscience, 2005, 16(2): 181-185, 189(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200502009.htm
    [25]
    Sun M D, Zhao J L, Pan Z J, et al. Pore characterization of shales: A review of small angle scattering technique[J]. Journal of Natural Gas Science and Engineering, 2020, 78: 103294. http://www.sciencedirect.com/science/article/pii/S1875510020301487
    [26]
    Yang R, Hao F, He S, et al. Experimental investigations on the geometry and connectivity of pore space in organic-rich Wufeng and Longmaxi shales[J]. Marine and Petroleum Geology, 2017, 84: 225-242. http://www.sciencedirect.com/science/article/pii/S0264817217301198
    [27]
    Meyer K, Klobes P. Comparison between different presentations of pore size distribution in porous materials[J]. Fresenius Journal of Analytical Chemistry, 1999, 363(2): 174-178. http://www.onacademic.com/detail/journal_1000034442854710_03e6.html
    [28]
    Thommes M, Kaneko K, Neimark A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069.
    [29]
    Tian H, Pan L, Xiao X M, et al. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong thrust fold belt, southwestern China using low pressure N2 adsorption and FE-SEM methods[J]. Marine and Petroleum Geology, 2013, 48: 8-19. http://www.sciencedirect.com/science/article/pii/S0264817213001761
    [30]
    [31]
    Surdam R C, Jiao Z S, MacGowan D B. Redox reactions involving hydrocarbons and mineral oxidants: A mechanism for significant porosity enhancement in sandstones[J]. AAPG Bulletin, 1993, 77(9): 1509-1518. http://www.osti.gov/scitech/biblio/140969-redox-reactions-involving-hydrocarbons-mineral-oxidants-mechanism-porosity-enhancement
    [32]
    Milliken K L. Late diagenesis and mass transfer in sandstone-shale sequences[J]. Treatise on Geochemistry, 2003, 7: 159-190. http://www.sciencedirect.com/science/article/pii/B0080437516070912
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(485) PDF Downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return