Citation: | Wang Zecheng, Li Dongwei, Zhang Chaochao, Luo Changtai, Bu Wenjie, Jia Zhiwen, Chen Hao. Effect of water content on the mechanical properties of artificially frozen red clay[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 287-293. doi: 10.19509/j.cnki.dzkq.2022.0090 |
In the construction of artificial freezing methods, the strength and deformation characteristics of frozen soil are crucial to the stability of frozen walls. To investigate the effect of different water contents on the strength and creep of the soil under freezing action after specimen preparation, the specimen was kept in an incubator for 24 hours, and the influence of moisture content on the strength and creep characteristics of Jiangxi red clay was studied by freezing triaxial tests at -10℃. The results show that the compressive strength of frozen red clay first increases and then decreases with increasing water content in the range of 16%-32%. In the range of 16%-28% water content, the cohesion increases and the internal friction angle decreases with increasing water content.The creep curves under confining pressures of 0.2 MPa and 0.5 MPa show that the red clay with a low water content only has a decay creep stage and stable creep.The results can be used as a reference for the artificial freezing method in the construction of subway tunnels in the red clay stratum in Jiangxi Province.
[1] |
岳建刚. 不同应力路径下南昌红土的变形与强度特性研究[D]. 江苏徐州: 中国矿业大学, 2017.
Yue J G. Study on characteristics of deformation and strength of Nanchang laterite in different stress paths[D]. Xuzhou, Jiangsu: China University of Mining and Technology, 2017(in Chinese with English abstract).
|
[2] |
Zhou C Y, Jing X D, Liu Z, et al. Disintegration characteristics and modification of weathered soil in red beds in southern China[J]. Journal of Engineering Geology, 2019, 27(6): 1253-1261.
|
[3] |
张新启, 龚爱民, 徐兴倩, 等. 考虑含水率变化影响的红黏土边坡双强度折减法研究[J]. 水利水电技术, 2020, 51(9): 181-186. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202009021.htm
Zhang X Q, Gong A M, Xu X Q, et al. Double strength reduction method-based study on red clay slope under consideration of impact from water content variation[J]. Water Resources and Hydropower Engineering, 2020, 51(9): 181-186 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202009021.htm
|
[4] |
高彬, 陈筠, 杨恒, 等. 红黏土在不同应力路径下的力学特性试验研究[J]. 地下空间与工程学报, 2018, 14(5): 1202-1212. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201805008.htm
Gao B, Chen J, Yang H, et al. Experimental study on mechanical properties of red clay under different stress paths[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(5): 1202-1212(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201805008.htm
|
[5] |
周龙. 非饱和红土强度及变形特性试验研究[D]. 南昌: 南昌大学, 2014.
Zhou L. Experimental research on strength and deformation characteristics of unsaturated laterite[D]. Nanchang: Nanchang University, 2014(in Chinese with English abstract).
|
[6] |
刘小文, 常立君, 胡小荣. 非饱和红土基质吸力与含水率及密度关系试验研究[J]. 岩土力学, 2009, 30(11): 3302-3306. doi: 10.3969/j.issn.1000-7598.2009.11.014
Liu X W, Chang L J, Hu X R. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. Rock and Soil Mechanics, 2009, 30(11): 3302-3306(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2009.11.014
|
[7] |
赵永虎, 米维军, 赵庆伦, 等. 红黏土隧道围岩含水率变化及变形特征分析[J]. 铁道建筑, 2019, 59(8): 89-91. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201908022.htm
Zhao Y H, Mi W J, Zhao Q L, et al. Analysis of water content change and deformation characteristics of surrounding rock of red clay tunnel[J]. Railway Engineering, 2019, 59(8): 89-91(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201908022.htm
|
[8] |
赵亚文. 不同含水率下红黏土抗剪强度特性的研究方法探讨[J]. 开封大学学报, 2017, 31(3): 95-96. doi: 10.3969/j.issn.1008-343X.2017.03.024
Zhao Y W. Discussion on research methods of shear strength characteristics of red clay under different moisture content[J]. Journal of Kaifeng University, 2017, 31(3): 95-96(in Chinese with English abstract). doi: 10.3969/j.issn.1008-343X.2017.03.024
|
[9] |
李怀鑫, 林斌, 陈士威, 等. 不同含水率下红黏土软化模型及强度试验研究[J]. 黄金科学技术, 2020, 28(3): 442-449. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ202003019.htm
Li H X, Lin B, Chen S W, et al. Study on the softening model and strength of red clay at different water content[J]. Gold Science and Technology, 2020, 28(3): 442-449(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ202003019.htm
|
[10] |
叶云雪. 江西非饱和红土土-水特征曲线研究[D]. 南昌: 南昌大学, 2014.
Ye Y X. Research on soil-water characteristic curve of unsaturated laterite in Jiangxi[D]. Nanchang: Nanchang University, 2014(in Chinese with English abstract).
|
[11] |
胡世丽, 蒋冰. 级配和含水量对赣南红土抗剪强度特性影响的试验研究[J]. 江西理工大学学报, 2021, 42(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-NFYX202101002.htm
Hu S L, Jiang B. Experimental study of the influence of water content and particle size distribution on shear strength of red soil in South Jiangxi[J]. The Jiangxi University of Science and Technology Journal, 2021, 42(1): 1-6(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NFYX202101002.htm
|
[12] |
Long Z L, Cheng Y Z, Yang G Y, et al. Study on triaxial creep test and constitutive model of compacted red clay[J/OL]. International Journal of Civil Engineering, 2020: 1-15. doi: 10.1007/s40999-020-00572-x.
|
[13] |
Fang J, Zhu J A, Meng L. Water-sensitive properties of shear strength of Bijie red clay under direct shear testing[C]//Anon. IOP Conference Series: Earth and Environmental Science. [S. l.]: IOP Publishing, 2019: 052083.
|
[14] |
Xue K X, Wang S F, Hu Y X, et al. Creep behavior of red clay under triaxial compression condition[J]. Frontiers in Earth Science, 2020, 7: 345-356.
|
[15] |
胡艳欣. 红黏土含水量和干密度与抗剪强度的相关性分析[J]. 人民长江, 2017, 48(增刊1): 249-252. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE2017S1068.htm
Hu Y X. Correlation analysis of water content, dry density and shear strength of red clay[J]. Yangtze River, 2017, 48(S1): 249-252(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE2017S1068.htm
|
[16] |
陈筠, 高彬, 白文胜, 等. 红黏土在卸荷状态下的力学特性试验研究[J]. 地下空间与工程学报, 2019, 15(5): 1393-1401. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201905015.htm
Chen J, Gao B, Bai W S, et al. Experimental study on the relationship between unloading ratio and deformation of red clay under excavation unloading[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(5): 1393-1401 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201905015.htm
|
[17] |
周盛涛, 方文, 蒋楠, 等. 冻融循环作用下砂岩单轴压缩破坏断口特征分形研究[J]. 地质科技通报, 2020, 39(5): 61-68. doi: 10.19509/j.cnki.dzkq.2020.0518
Zhou S T, Fang W, Jiang N, et al. Fractal geometry study on uniaxial compression fracture characteristics of sandstone subjected to freeze-thaw cycles[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 61-68(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0518
|
[18] |
穆锐, 黄质宏, 浦少云, 等. 循环荷载下原状红黏土的累积变形特征及动本构关系研究[J]. 岩土力学, 2020, 41(2): 1-10.
Mu R, Huang Z H, Pu S Y, et al. Accumulated deformation characteristics of undisturbed red clay under cyclic loading and dynamic constitutive relationship[J]. Rock and Soil Mechanics, 2020, 41(2): 1-10(in Chinese with English abstract).
|
[19] |
唐保春, 马月花, 权国苍, 等. 冻土冻融对地下水的影响: 以祁连山多年冻土区大通河谷融区为例[J]. 地质科技情报, 2016, 35(4): 164-171. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604026.htm
Tang B C, Ma Y H, Quan G C, et al. Impact of freezing-thawing process of frozen soil on ground water: A case study in the Datong River valley area of the Qilian permafrost region[J]. Geological Science and Technology Information, 2016, 35(4): 164-171(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604026.htm
|
[20] |
左庆祥. 冻融循环作用下武汉红黏土工程特性试验研究[D]. 武汉: 武汉科技大学, 2020.
Zuo Q X. Experimental sstudy on engineering properties of Wuhan red clay under freeze-thaw cycles[D]. Wuhan: Wuhan University of Science and Technology, 2020(in Chinese with English abstract).
|
[21] |
薛珂, 温智, 马小涵, 等. 冻结作用对青藏红黏土及兰州粉土微观结构的影响分析[J]. 冰川冻土, 2019, 41(5): 1122-1129. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201905012.htm
Xue K, Wen Z, Ma X H, et al. Experimental study of the influence of freezing-thawing cycles on physical and mechanical properties of Qinghai-Tibet red clay[J]. Journal of Glaciology and Geocryology, 2019, 41(5): 1122-1129(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201905012.htm
|
[22] |
薛珂, 杨明彬, 温智, 等. 基于pF Meter的土体冻结特征曲线研究[J]. 中国公路学报, 2018, 31(3): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201803004.htm
Xue K, Yang M B, Wen Z, et al. pF Meter-based research on soil freezing characteristic curves[J]. China Journal of Highway and Transport, 2018, 31(3): 22-29(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201803004.htm
|
[23] |
李国强. 人工冻结红黏土力学特性试验研究[D]. 合肥: 安徽理工大学, 2018.
Li G Q. Experimental study on mechanical properties of artificially frozen red clay[D]. Heifei: Anhui University of Science and Technology, 2018(in Chinese with English abstract).
|
[24] |
蔡正银, 吴志强, 黄英豪, 等. 含水率和含盐量对冻土无侧限抗压强度影响的试验研究[J]. 岩土工程学报, 2014, 36(9): 1580-1586. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409005.htm
Cai Z Y, Wu Z Q, Huang Y H, et al. Influence of water and salt contents on strength of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1580-1586(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409005.htm
|
[25] |
李栋伟, 汪仁和, 林斌, 等. 冻黏土黏弹塑本构方程及试验验证[J]. 煤炭工程, 2005(8): 69-71.
Li D W, Wang R H, Lin B, et al. Verification on viscoelastic plastic constructive equation and test of freezing clay[J]. Coal Engineering, 2005(8): 69-71 (in Chinese with English abstract).
|