Volume 41 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Zhou Ke, Huang Xiaocheng, Lei Deyang, Chen Qiunan, Jiang Feifei. Determinations of the critical sliding surface of planar sliding rock slopes and their stability analysis[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 325-334. doi: 10.19509/j.cnki.dzkq.2022.0062
Citation: Zhou Ke, Huang Xiaocheng, Lei Deyang, Chen Qiunan, Jiang Feifei. Determinations of the critical sliding surface of planar sliding rock slopes and their stability analysis[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 325-334. doi: 10.19509/j.cnki.dzkq.2022.0062

Determinations of the critical sliding surface of planar sliding rock slopes and their stability analysis

doi: 10.19509/j.cnki.dzkq.2022.0062
  • Received Date: 08 Jan 2021
  • It is still a difficult problem to determine the sliding surface of a rock slope quickly and accurately because the efficiency and accuracy cannot be met at the same time in traditional searching methods. The limit equilibrium method is widely accepted in the stability analysis of rock slopes. The planar shear sliding model of a rock slope is adopted to characterize the position of the potential sliding surface by the inclination of the sliding surface; the analytical solution of the potential sliding surface of a multistage rock slope under the condition of limit equilibrium is derived based on the extreme value method, and its accuracy is verified combined with the Sau Mau Ping slope in Hong Kong. Furthermore, the system stability of the Dayingpanshan slope in Yibi, Sichuan Province with multiple steps in a highway is analysed. The results show that the slope potential sliding surface inclination determined by this method is in agreement with the practical sliding inclination of the Sau Mau Ping slope. In practical engineering applications, the dip angles of the sliding surface obtained by using the Cuckoo search method and simulated annealing method in Slide software are 38.0° and 37.0°, respectively, and the dip angle obtained by the analytical method in this paper is 34.8°.The Janbu method, Morgenstern-Price method and Sarma method are selected to calculate the corresponding stability coefficients, the results are approximately 1.04. The stability coefficient obtained in this paper is 1.15. The results obtained by this method are basically accurate. Through parameter sensitivity analysis, it is found that with the increase in cohesion, the inclination angle of the slope slip surface decreases, and the stability coefficient also increases. When the internal friction angle increases, the slope slip surface inclination and stability coefficient also increase.

     

  • loading
  • [1]
    朱冬雪, 许强, 李松林. 三峡库区大型-特大型层状岩质滑坡成因模式及地质特征分析[J]. 地质科技通报, 2020, 39(2): 158-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202002019.htm

    Zhu D X, Xu Q, Li S L. Genetic types and geological features of large scale and extra-large scale layered landslides in the Three Gorges Reservoir area[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 158-167(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202002019.htm
    [2]
    丁戈媛, 胡新丽. 大奔流顺层岩质滑坡溃屈型破坏力学机制研究[J]. 地质科技通报, 2020, 39(2): 186-190. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202002022.htm

    Ding G Y, Hu X L. Mechanical mechanism of buckling failure ofDabenliu consequent bedding rockslide[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 186-190(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202002022.htm
    [3]
    王成华, 夏绪勇. 边坡稳定分析中的临界滑动面搜索方法述评[J]. 四川建筑科学研究, 2002, 28(3): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-ACZJ200203013.htm

    Wang C H, Xia X Y. A review of critical slip surface search methods in slope stability analysis[J]. Sichuan Building Science, 2002, 28(3): 34-39(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ACZJ200203013.htm
    [4]
    Huang Y H. Stability analysis of earth slopes[M]. [S. l. ]: Springer US, 1983.
    [5]
    江见鲸. 土建工程常用微机程序汇编[M]. 北京: 水利电力出版社, 1987.

    Jiang J J. Microcomputer program assembly commonly used in civil engineering[M]. Beijing: Water Resources and Electric Power Press, 1987(in Chinese).
    [6]
    Garber M D. Variational method for investigating the stability of slopes[J]. Soil Mechanics & Foundation Engineering, 1973, 10(1): 77-79.
    [7]
    孙君实. 条分法的提法及数值计算的最优化方法[J]. 水力发电学报, 1983, 2(1): 52-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB198301005.htm

    Sun J S. The formulation of the method of slices and the optimization method of numerical calculation[J]. Journal of Hydroelectric Engineering, 1983, 2(1): 52-64(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB198301005.htm
    [8]
    陈祖煜, 邵长明. 最优化方法在确定边坡最小安全系数方面的应用[J]. 岩土工程学报, 1988, 10(4): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC198804000.htm

    Cheng Z Y, Shao C M. Timization for minimizing safety factors in slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 1988, 10(4): 1-13(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC198804000.htm
    [9]
    Fellenius W. Calculation of the stability of earth dams[C]//Proc. of the Second Congress on Large Dams. [S. l. ]: [s. n. ], 1936: 445-462.
    [10]
    Siegel R A. Computer analysis of general slope stability problems[D]. Indians: Durdue University, 1975: 210.
    [11]
    Husein-Malkawi A I, Hassan W F, Sarma S K. Global search method for locating general slip surface using Monte Carlo techniques[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(8): 688-698. doi: 10.1061/(ASCE)1090-0241(2001)127:8(688)
    [12]
    张子映, 柴军瑞, 张书滨, 等. 基于混合变异策略差分进化算法的边坡滑裂面搜索研究[J]. 水资源与水工程学报, 2018, 29(4): 218-223. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201804037.htm

    Zhang Z Y, Chai J R, Zhang S B, et al. Research on slope sliding surface search based on differential evolution algorithm with mixed mutation strategy[J]. Journal of Water Resources& Water Engineering, 2018, 29(4): 218-223(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201804037.htm
    [13]
    王华俊, 卿翠贵, 姚文杰. 一种改进的遗传算法在边坡工程中的应用[J]. 水利与建筑工程学报, 2015, 13(3): 195-199. https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS201503040.htm

    Wang H J, Qing C G, Yao W J. Application of an improved genetic algorithmin slope engineering[J]. Journal of Water Resources and Architectural Engineering, 2015, 13(3): 195-199(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS201503040.htm
    [14]
    马俊, 资强, 吕录娜, 等. 基于改进蚁群算法的边坡稳定分析方法研究[J]. 水利规划与设计, 2019, 31(7): 64-68. https://www.cnki.com.cn/Article/CJFDTOTAL-SLGH201907019.htm

    Ma J, Zi Q, Lü L N, et al. Study on slope stability analysis method based on improved ant colony algorithm[J]. Water Resources Planning and Design, 2019, 31(7): 64-68(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SLGH201907019.htm
    [15]
    路畅, 白桃. 采用模拟退火法进行土体参数空间变异边坡的安全系数求解[J]. 公路工程, 2017, 42(3): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201703005.htm

    Lu C, Bai T. Solution of safety factor of the spatially variable soil slope using simulated annealing algorithm[J]. Highway Engineering, 2017, 42(3): 26-30(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201703005.htm
    [16]
    Zheng H, Liu D F, Li C G. Slope stability analysis based on elasto-plastic finite element method[J]. International Journal for Numerical Methods in Engineering, 2005, 64(14): 1871-1888.
    [17]
    Zheng H, Liu D F, Li C G. On the assessment of failure in slope stability analysis by the finite element method[J]. Rock Mechanics and Rock Engineering, 2008, 41(4): 629-639.
    [18]
    Zheng H, Tham L G. Improved Bell's method for the stability analysis of slopes[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(14): 1673-1689.
    [19]
    Zheng H, Sun G H, Liu D F. A practical procedure for searching critical slip surfaces of slopes based on the strength reduction technique[J]. Computers and Geotechnics, 2009, 36(1): 1-5.
    [20]
    章瑞环, 叶帅华, 陶晖. 基于改进极限平衡法的多级均质黄土边坡稳定性分析[J]. 岩土力学, 2021, 42(3): 813-825. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103024.htm

    Zhang R H, Ye S H, Tao H. Stability analysis of multistage homogeneous loess slopes by improved limit equilibrium method[J]. Rock and Soil Mechanics, 2021, 42(3): 813-825(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103024.htm
    [21]
    蔡美峰, 何满朝, 刘东燕. 岩石力学与工程[M]. 北京: 科学出版社, 2002.

    Cai M F, He M C, Liu D Y. Rock mechanics and engineering[M]. Beijing: Science Press, 2002(in Chinese).
    [22]
    钱家欢, 殷宗泽. 土工原理与计算[M]. 北京: 中国水利水电出版社, 1996: 302-307.

    Qian J H, Yin Z Z. Geotechnical principles and calculations[M]. Beijing: China Water&Power Press, 1996: 302-307(in Chinese).
    [23]
    重庆市城乡建设委员会. 建筑边坡工程技术规范: GB 50330-2013[S]. 北京: 中国建筑工业出版社, 2013.

    Chongqing Urban and Rural Development. Technical code forbuilding slope engineering: GB50330-2013[S]. Beijing: China Architecture & Building Press, 2013(in Chines).
    [24]
    中华人民共和国水利部. 工程岩体分级标准: GB/T 50218-2014[S]. 北京: 中国计划出版社, 2014.

    Ministry of Water Resources of the People's Republic of China. Standard for engineering classification of rock mass: GB/T 50218-2014[S]. Beijing: China Planning Press, 2014.
    [25]
    Hoek E. Practical rock engineering[M]. Toronto: Rocscience, 2000: 92-104.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(813) PDF Downloads(90) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return