Volume 41 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Wang Shangshang, Chen Fu, Li Dongxian, Lin Houlai, Liu Zhiliang, Li Liang. Influence of anchor uncertainty on the failure probability of reinforced slope[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 282-289. doi: 10.19509/j.cnki.dzkq.2022.0055
Citation: Wang Shangshang, Chen Fu, Li Dongxian, Lin Houlai, Liu Zhiliang, Li Liang. Influence of anchor uncertainty on the failure probability of reinforced slope[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 282-289. doi: 10.19509/j.cnki.dzkq.2022.0055

Influence of anchor uncertainty on the failure probability of reinforced slope

doi: 10.19509/j.cnki.dzkq.2022.0055
  • Received Date: 19 Apr 2021
  • To explore the influence of anchor uncertainty on the failure probability of reinforced slopes, the uncertainty of anchors is considered through the following two approaches: one assumes that the friction force on the unit surface of the contact surface between the anchor and the anchor solid is a log-normal distribution variable, and the other introduces the attenuation coefficient of the friction force on the unit surfaceof the contact surface between the anchor and the anchor solid to consider the uncertainty of the anchor during construction and maintenance. The limit equilibrium method and Monte Carlo sampling method are used to calculate and compare the variation curve of the failure probability of the reinforced slope through two approaches.Finally, the effectiveness of the proposed method is validated against an example of the slope retaining project of the Shenzhen Holiday Inn foundation pit.The results show that the failure probability of the reinforced slope increases gradually with the increase range in the coefficient of variation of unit surface friction on the contact surface between the anchor and the anchor solid under the same soil statistical parameters, and the increase range is between 18.03% and 41.90% for the first approach. For the second approach, the failure probability of the reinforced slope increases rapidly with the decrease in the attenuation coefficient of the anchor ranging from 1.0 to 0.0, and the increase range is between 55.64% and 124.90%. Under the same attenuation coefficient, the failure probability of the reinforced slope increases with the increase in the number of attenuation anchors. The research results provide decision support for the management of anchors during construction and operation.

     

  • loading
  • [1]
    Huang R Q. Mechanisms of large-scale landslides in China[J]. Bulletin of Engineering Geology and the Environment, 2011, 71(1): 161-170.
    [2]
    黄少平, 晏鄂川, 尹晓萌, 等. 不同临空条件的层状反倾岩质边坡倾倒变形几何特征参数影响规律[J]. 地质科技通报, 2021, 40(1): 159-165. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202101017.htm

    Huang S P, Yan E C, Yin X M, et al. The action law of geometrical characteristic parameters in the anti-dip rock slopes under different free face condition[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 159-165(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202101017.htm
    [3]
    Li L, Zhai M, Ling X, et al. On the location of multiple failure slip surfaces in slope stability problems using the meshless SPH algorithm[J]. Advances in Civil Engineering, 2020(3): 1-8.
    [4]
    陈祖煜, 詹成明, 姚海林, 等. 重力式挡土墙抗滑稳定分析安全判据和标准研究[J]. 岩土力学, 2016, 37(8): 2129-2137. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201608001.htm

    Chen Z Y, Zhan C M, Yao H L, et al. Safety criterion and standards for stability analysis of gravity retaining walls[J]. Rock and Soil Mechanics, 2016, 37(8): 2129-2137(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201608001.htm
    [5]
    咸玉建, 陈学军, 汪志刚, 等. 基于有限元强度折减系数法岩土边坡稳定性分析与抗滑桩设计[J]. 地质科技情报, 2015, 34(4): 176-182. doi: 10.3969/j.issn.1009-6248.2015.04.017

    Xian Y J, Chen X J, Wang Z G, et al. Geotechnical slope stability analysis and the design of anti-slide pile based on strength reduction FEM[J]. Geological Science and Technology Information, 2015, 34(4): 176-182(in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2015.04.017
    [6]
    Chen F, Zhang R, Wang Y, et al. Probabilistic stability analyses of slope reinforced with piles in spatially variable soils[J]. International Journal of Approximate Reasoning, 2020, 122: 66-79. doi: 10.1016/j.ijar.2020.04.006
    [7]
    安彩龙, 梁烨, 王亮清, 等. 岩质边坡平面滑动锚固方向角的三维优化方法[J]. 地质科技通报, 2020, 39(5): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202005004.htm

    An C L, Liang Y, Wang L Q, et al. Three-dimensional optimization method for the anchorage direction angle of plane sliding in rock slope[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 23-30(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202005004.htm
    [8]
    Zhang J, Wang H, Huang H W, et al. System reliability analysis of soil slopes stabilized with piles[J]. Engineering Geology, 2017, 229: 45-52. doi: 10.1016/j.enggeo.2017.09.009
    [9]
    李典庆, 蒋水华, 张利民, 等. 考虑锚杆腐蚀作用的岩质边坡系统可靠度分析[J]. 岩石力学与工程学报, 2013, 32(6): 1137-1144. doi: 10.3969/j.issn.1000-6915.2013.06.007

    Li D Q, Jiang S H, Zhang L M, et al. System reliability analysis of rock slopes considering rock bolt corrosion[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(6): 1137-1144(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6915.2013.06.007
    [10]
    陈祖煜, 宗露丹, 孙平, 等. 加筋土坡的可能滑移模式和基于库仑理论的稳定分析方法[J]. 土木工程学报, 2016, 49(6): 113-122. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201606013.htm

    Chen Z Y, Zong L D, Sun P, et al. Investigation on possible failure modes of geotextile reinforced slopes and stability analysis methods based on Coulomb theory[J]. China Civil Engineering Journal, 2016, 49(6): 113-122(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201606013.htm
    [11]
    Blatz J A, Bathurst R J. Limit equilibrium analysis of large-scale reinforced and unreinforced embankments loaded by a strip footing[J]. Canadian Geotechnical Journal, 2003, 40(6): 1084-1092. doi: 10.1139/t03-053
    [12]
    徐前卫, 丁文其, 朱合华, 等. 不同锚固方式下软弱破碎岩质边坡渐进破坏特性的模型试验研究[J]. 岩土工程学报, 2012, 34(6): 1069-1079. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201206017.htm

    Xu Q W, Ding W Q, Zhu H H, et al. Experimental study on progressive failure properties of weak and fractured rock slopes with different anchoring modes[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1069-1079(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201206017.htm
    [13]
    林杭, 陈宝成, 范祥, 等. 锚杆长短相间布置形式对边坡稳定性的影响[J]. 中南大学学报: 自然科学版, 2015, 46(2): 625-630. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201502034.htm

    Lin H, Chen B C, Fan X, et al. Effect of bolt with long-short layout on slope stability[J]. Journal of Central South University: Science and Technology, 2015, 46(2): 625-630(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201502034.htm
    [14]
    韩冬冬, 门玉明, 胡兆江. 土质滑坡格构锚杆抗滑机制及受力试验研究[J]. 岩土力学, 41(4): 1189-1194, 1202.

    Han D D, Men Y M, Hu Z J. Experimental study of anti-sliding mechanism and force of lattice anchor in soil landslide[J] Rock and Soil Mechanics, 2020, 41(4): 1189-1194, 1202(in Chinese with English abstract).
    [15]
    李国维, 赫新荣, 吴建涛, 等. 泥质砂软岩边坡加固锚杆黏结疲劳特征原位试验[J]. 岩石力学与工程学报, 2020, 39(9): 1729-1738. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009001.htm

    Li G W, He X R, Wu J T, et al. Insitu test on bond fatigue characteristics of bolts for reinforcing soft shaly sandstone slopes[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(9): 1729-1738(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009001.htm
    [16]
    张季如, 唐保付. 锚杆荷载传递机理分析的双曲函数模型[J]. 岩土工程学报, 2002, 24(2): 188-192. doi: 10.3321/j.issn:1000-4548.2002.02.013

    Zhang J R, Tang B F. Hyperbolic function model to analyze load transfer mechanism on bolts[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 188-192(in Chinese with English abstract). doi: 10.3321/j.issn:1000-4548.2002.02.013
    [17]
    Ren F, Yang Z, Chen J F, et al. An analytical analysis of the full-range behaviour of grouted rockbolts based on a tri-linear bond-slip model[J]. Construction and Building Materials, 2010, 24(3): 361-370. doi: 10.1016/j.conbuildmat.2009.08.021
    [18]
    Chakravorty M, Frangopol D M, Mosher R L, et al. Time-dependent reliability of rock-anchored structures[J]. Reliability Engineering & System Safety, 1995, 47(3): 231-236.
    [19]
    陈昌富, 成晓炜. 双滑块边坡锚固系统时变可靠性分析[J]. 岩土力学, 2012, 33(1): 197-203. doi: 10.3969/j.issn.1000-7598.2012.01.031

    Chen C F, Cheng X W. Time-varying reliability analysis of anchor system of rock slopes with double slide blocks[J]. Rock and Soil Mechanics, 2012, 33(1): 197-203(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2012.01.031
    [20]
    陈昌富. 仿生算法及其在边坡和基坑工程中的应用[D]. 长沙: 湖南大学, 2001.

    Chen C F. Bionic algorithm and its application to slope and excavation engineering[D]. Changsha: Hunan University, 2001(in Chinese with English abstract).
    [21]
    王辉, 程建华. 锚杆自由段对潜在滑移面的影响机制分析[J]. 广西大学学报: 自然科学版, 2019, 44(1): 165-169. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201901019.htm

    Wang H, Cheng J H. Influence mechanism of unbounded part of anchor on potential sliding surface[J]. Journal of Guangxi University: Natural Science Edition, 2019, 44(1): 165-169(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201901019.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(427) PDF Downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return