Volume 41 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Zhang Yujie, Xu Guoqing, Wang Yang, Yang Chaoyue, Peng Keng, Wang Wei. Laboratory experiment on the influence of constraint conditions on landslide-generated waves[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 309-314. doi: 10.19509/j.cnki.dzkq.2022.0052
Citation: Zhang Yujie, Xu Guoqing, Wang Yang, Yang Chaoyue, Peng Keng, Wang Wei. Laboratory experiment on the influence of constraint conditions on landslide-generated waves[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 309-314. doi: 10.19509/j.cnki.dzkq.2022.0052

Laboratory experiment on the influence of constraint conditions on landslide-generated waves

doi: 10.19509/j.cnki.dzkq.2022.0052
  • Received Date: 08 Jan 2021
  • The constraint conditions have a great influence on the geometry of reservoir landslides during mass movement and are one of the most important parameters for predicting landslide-generated waves. To explore the effects of constraint conditions on the characteristics of landslide-generated waves (such as wave height, amplitude and period), 54 sets of landslide-generated wave physical model experiments based on the orthogonal experimental design method were conducted in this paper. Furthermore, the wave characteristics under constrained and semiconstrained conditions were analysed using statistical methods. The results indicate that the wave period is basically unaffected by the constraint conditions, while the wave height and amplitude of the semiconstrained model are smaller than those of the constrained model, the initial wave height of the semiconstrained model is approximately 0.95 times higher than that of the constrained model, and the maximum amplitude of the semiconstrained model is approximately 0.9 times that of the constrained model. Therefore, it is safer to predict the initial wave height and maximum amplitude by using the geometric parameters before failure, although the geometry of the landslide has been greatly changed from its original state.This study can provide a theoretical basis for landslide-tsunamis prediction.

     

  • loading
  • [1]
    李长冬, 龙晶晶, 姜茜慧, 等. 水库滑坡成因机制研究进展与展望[J]. 地质科技通报, 2020, 39(1): 67-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001009.htm

    Li C D, Long J J, Jiang X H, et al. Advance and prospect of formation mechanism for reservoir landslides[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 67-77(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001009.htm
    [2]
    杨背背, 殷坤龙, 梁鑫, 等. 三峡库区麻柳林滑坡变形特征及演化模拟[J]. 地质科技通报, 2020, 39(2): 122-129. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202002014.htm

    Yang B B, Yin K L, Liang X, et al. Deformation characteristics and evolution simulation of the Maliulin landslide in the Three Gorges Reservoir area[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 122-129(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202002014.htm
    [3]
    廖秋林, 李晓, 李守定, 等. 三峡库区千将坪滑坡的发生、地质地貌特征、成因及滑坡判据研究[J]. 岩石力学与工程学报, 2005, 24(17): 3146-3153. doi: 10.3321/j.issn:1000-6915.2005.17.023

    Liao Q L, Li X, Li S D, et al. Occurrence, geology and geomorphy characteristics and origin of qianjiangping landslide in three gorges reservoir area and study on ancient landslide criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3146-3153(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2005.17.023
    [4]
    Huang B, Yin Y, Wang S, et al. A physical similarity model of an impulsive wave generated by Gongjiafang landslide in Three Gorges Reservoir, China[J]. Landslides, 2014, 11(3): 513-525. doi: 10.1007/s10346-013-0453-x
    [5]
    Huang B L, Yin Y P, Du C L. Risk management study on impulse waves generated by Hongyanzi landslide in Three Gorges Reservoir of China on June 24, 2015[J]. Landslides, 2016, 13(3): 603-616. doi: 10.1007/s10346-016-0702-x
    [6]
    韩林峰, 王平义, 牟萍, 等. 滑坡涌浪近场波特性研究综述[J]. 武汉大学学报: 工学版, 2021, 54(6): 477-487. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD202106001.htm

    Han L F, Wang P Y, Mu P, et al. Review of near-field characteristics of impulse waves generated by landslides[J]. Engineering Journal of Wuhan University, 2021, 54(6): 477-487(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD202106001.htm
    [7]
    朱冬雪, 许强, 李松林. 三峡库区大型-特大型层状岩质滑坡成因模式及地质特征分析[J]. 地质科技通报, 2020, 39(1): 158-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202002019.htm

    Zhu D X, Xu Q, Li S L. Genetic types and geological features of large scale and extra-large scale layered landslides in the Three Gorges Reservoir area[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 158-167(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202002019.htm
    [8]
    Evers F, Hager W. Impulse wave generation: Comparison of Free Granular with Mesh-Packed Slides[J]. JMSE, 2015, 3(1): 100-110. doi: 10.3390/jmse3010100
    [9]
    Heller V, Spinneken J. Improved landslide-tsunami prediction: Effects of block model parameters and slide model[J]. Journal of Geophysical Research: Oceans, 2013, 118(3): 1489-1507. doi: 10.1002/jgrc.20099
    [10]
    Viroulet S, Cébron D, Kimmoun O, et al. Shallow water waves generated by subaerial solid landslides[J]. Geophysical Journal International, 2013, 193(2): 747-762. doi: 10.1093/gji/ggs133
    [11]
    Viroulet S, Sauret A, Kimmoun O. Tsunami generated by a granular collapse down a rough inclined plane[J]. EPL(Europhysics Letters), 2014, 105(3): 34004. doi: 10.1209/0295-5075/105/34004
    [12]
    Panizzo A, De Girolamo P, Petaccia A. Forecasting impulse waves generated by subaerial landslides[J]. Journal of Geophysical Research: Oceans, 2005, 110: C12025. doi: 10.1029/2004JC002778
    [13]
    DeCapio V P. Experimental study of landslide generated water waves[M]. [S. l. ]: Cornell University, Jan., 2007.
    [14]
    Yavari-Ramshe S, Ataie-Ashtiani B. On the effects of landslide deformability and initial submergence on landslide-generated waves[J]. Landslides, 2019, 16(1): 37-53. doi: 10.1007/s10346-018-1061-6
    [15]
    Meng Z, Ancey C. The effects of slide cohesion on impulse-wave formation[J]. Experiments in Fluids, 2019, 60(10): 1-14.
    [16]
    吴长虹, 江兴元, 杨义, 等. 散体滑坡涌浪形成与传播的物理模拟试验研究[J/OL]. 长江科学院院报, 2021: 1-7[2022-02-25]. http://kns.cnki.net/kcms/detail/42.1171.TV.20211007.1907.002.html.

    Wu C H, Jiang X Y, Yang Y, et al. Experimental study on the generation and propagation of impulse wave generated by granular landslide[J/OL]. Journal of Yangtze River Scientific Research Institute, 2021: 1-7[2022-02-25]. http://kns.cnki.net/kcms/detail/42.1171.TV.20211007.1907.002.html(in Chinese with English abstract).
    [17]
    任坤杰, 韩继斌. 散体滑坡体首浪高度模型试验研究[J]. 人民长江, 2011, 42(24): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201124023.htm

    Ren K J, Han J B. Experimental research on primary wave height generated by loose earth landslide[J]. Yangtze River, 2011, 42(24): 69-72(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201124023.htm
    [18]
    任坤杰, 韩继斌, 陆虹. 滑坡涌浪首浪高度试验研究[J]. 人民长江, 2012, 43(2): 43-45, 61. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201202014.htm

    Ren K J, Han J B, Lu H, Experimental research on primary wave height generated by solid- type landslide[J]. Yangtze River, 2012, 43(2): 43-45, 61(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201202014.htm
    [19]
    Rzadkiewicz S A, Mariotti C, Heinrich P. Modelling of submarine landslides and generated water waves[J]. Physics and Chemistry of the Earth, 1996, 21(1/2): 7-12.
    [20]
    Davidson D D, Whalin R W. Potential Landslide-generated water waves, Libby Dam and Lake Koocanusa, Montana: Hydraulic Model Investigation[M]. [S. l. ]: Waterways Experiment Station, 1974.
    [21]
    Evers F M, Hager W H, Boes R M. Spatial impulse wave generation and propagation[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2019, 145(3): 04019011. doi: 10.1061/(ASCE)WW.1943-5460.0000514
    [22]
    Meng Z, Hu Y, Ancey C. Using a data driven approach to predict waves generated by gravity driven mass flows[J]. Water, 2020, 12(2): 600. doi: 10.3390/w12020600
    [23]
    方仕达, 汪洋, 霍志涛, 等. 水深对水库滑坡涌浪传播规律影响的试验研究[J]. 安全与环境工程, 2021, 28(5): 96-100. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202105013.htm

    Fang S D, Wang Y, Huo Z T, et al. Experimental study on the effect of water depth on propagation of landslide-generated impulse waves[J]. Safety and Environmental Engineering, 2021, 28(5): 96-100(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202105013.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(387) PDF Downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return