Volume 41 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Li Jixing, Yan Song, Yang Chunjian, Fang Yueguang. Rainfall erosion characteristics of argillaceous sandstone residual soil slopes[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 26-33. doi: 10.19509/j.cnki.dzkq.2022.0051
Citation: Li Jixing, Yan Song, Yang Chunjian, Fang Yueguang. Rainfall erosion characteristics of argillaceous sandstone residual soil slopes[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 26-33. doi: 10.19509/j.cnki.dzkq.2022.0051

Rainfall erosion characteristics of argillaceous sandstone residual soil slopes

doi: 10.19509/j.cnki.dzkq.2022.0051
  • Received Date: 27 Apr 2021
  • As a special soil with a strong structure, argillaceous sandstone residual soil has the characteristics of strong disintegration, poor erosion resistance and great disturbance, it has great influence on the engineering construction. To explore the mechanism of rainfall erosion of argillaceous sandstone residual soil slopes, a slope rainfall erosion test is designed. The surface erosion effect is analysed by 3D laser scanning technology on site. The infiltration characteristics, surface brush evolution mechanism and erosion failure mechanism of argillaceous sandstone residual soil slopes are further clarified by using a high-density electrical method. The results show that in the initial stage of the experiment, the precipitation was highly permeable and mainly migrated to the foot of the slope, and no obvious rills were formed on the surface of the slope. In the middle period of the erosion test, the soil at the foot of the slope reached saturation first, and slope runoff was formed, and the rill expanded to form small-scale erosion chutes and chip erosion areas.In the later stage of the test, the soil erosion in the middle of the slope and at the foot of the slope was serious. The upwards part of the channel at the foot of the slope extended, and the erosion area expanded, which led to the structural change in the surface soil, and the permeability difference was obvious. The rainfall erosion of argillaceous sandstone residual soil slope was mainly divided into three parts. The soil loss of slope mainly occurred in the last stage, with a maximum rill rate of 16.9% and gully connectivity of up to 0.74.

     

  • loading
  • [1]
    肖景红, 王敏, 王川, 等. 含优势渗流层边坡降雨入渗下的可靠度分析[J]. 地质科技通报, 2021, 40(6): 193-204. doi: 10.19509/j.cnki.dzkq.2021.0619

    Xiao J H, Wang M, Wang C, et al. Reliability analysis of slope with dominant seepage interlayer under rainfall infiltration[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 193-204(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0619
    [2]
    蒋先平, 张鹏, 卢艺伟, 等. 物质点强度折减法边坡失稳判据选择方法[J]. 地质科技通报: 1-10[2021-10-22]. http://kns.cnki.net/kcms/detai/42.1904.p.20211019.1142.006.html.

    Jiang X P, Zhang P, Lu Y W, et al. Slope failure criteria of material point strength reduction method[J]. Bulletin of Geological Science and Technology: 1-10[2021-10-22]. http://kns.cnki.net/kcms/detai/42.1904.p.20211019.1142.006.html(in Chinese with English abstract).
    [3]
    李长冬, 龙晶晶, 姜茜慧, 等. 水库滑坡成因机制研究进展与展望[J]. 地质科技通报, 2020, 39(1): 67-77. doi: 10.19509/j.cnki.dzkq.2020.0108

    Li C D, Long J J, Jiang Q H, et al. Advance and prospect of formation mechanism for reservoir landslides[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 67-77(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0108
    [4]
    汤兰. 花岗岩残积土边坡冲蚀特性室内模拟试验研究[D]. 长沙: 长沙理工大学, 2017.

    Tang L. Simulation experiment research on the granite residual soil slope erosion characteristics in laboratory[D]. Changsha: Changsha University of Science & Technology, 2017(in Chinese with English abstract).
    [5]
    郑晓栩. 厦门地区花岗岩残积土降雨滑坡模拟试验及土体破坏细观演变规律研究[D]. 福建厦门: 厦门大学, 2014.

    Zheng X X. Study on Rainfall landslide simulation experiment and meso evolution of soil failure of granite residual soils in Xiamen, area[D]. Xiamen, Fujian: Xiamen University, 2014(in Chinese with English abstract).
    [6]
    邓百洪, 赵旭, 龙志东. 花岗岩残积土边坡冲刷模拟试验研究[J]. 公路与汽运, 2019(1): 88-92. doi: 10.3969/j.issn.1671-2668.2019.01.022

    Deng B H, Zhao X, Long Z D. Study on erosion simulation of granite residual soil slope[J]. Highways and Automotive Applications, 2019(1): 88-92(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2668.2019.01.022
    [7]
    Liu W P, Song J X, Luo J, et al. The processes and mechanisms of collapsing erosion for granite residual soil in southern China[J]. Journal of Soils and Sediments, 2020, 20(2): 992-1002. doi: 10.1007/s11368-019-02467-4
    [8]
    Liu W P, Ouyang G Q, Luo X Y, et al. Moisture content, pore-water pressure and wetting front in granite residual soil during collapsing erosion with varying slope angle[J]. Geomorphology, 2020, 362: 107210. doi: 10.1016/j.geomorph.2020.107210
    [9]
    Tsuji Y, Kawaguchi T, Tanaka T. Discrete particle simulation of two-dimensional fluidized bed[J]. Power Technology, 1993, 77(1): 79-87. doi: 10.1016/0032-5910(93)85010-7
    [10]
    宋朋燃. 黄土边坡冲刷破坏特征及数值模拟[D]. 长春: 吉林大学, 2013.

    Song P R. The erosion damage characteristics and numerical simulation of loess slope[D]. Changchun: Jilin University, 2014(in Chinese with English abstract).
    [11]
    吴谦, 王常明, 宋朋燃, 等. 黄土陡坡降雨冲刷试验及其三维颗粒流流-固耦合模拟[J]. 岩土力学, 2014, 35(4): 977-985. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201404010.htm

    Wu Q, Wang C M, Song P R, et al. Rainfall erosion experiment for steep loess slope and fluid-soil coupling simulation with PFC3D[J]. Rock and Soil Mechanics, 2014, 35(4): 977-985(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201404010.htm
    [12]
    柯云斌, 符元帅, 阙云, 等. 降雨诱发残积土陡坡坡面冲刷破坏颗粒流模拟[J]. 济南大学学报: 自然科学版, 2019, 33(5): 453-459. https://www.cnki.com.cn/Article/CJFDTOTAL-SDJC201905011.htm

    Ke Y B, Fu Y S, Que Y, et al. Particle flow simulation for scour and failure of residual soil steep slopes induced by rainfall[J]. Journal of University of Jinan: Science and Technology Edition, 2019, 33(5): 453-459(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDJC201905011.htm
    [13]
    Li L P, Lan H X, Peng J B. Loess erosion patterns on a cut-slope revealed by LiDAR scanning[J]. Engineering Geology, 2020, 268: 105516. doi: 10.1016/j.enggeo.2020.105516
    [14]
    Jiang Y M, Shi H J, Wen Z M, et al. The dynamic process of slope rill erosion analyzed with a digital close range photogrammetry observation system under laboratory conditions[J]. Geomorphology, 2020, 350: 106893. doi: 10.1016/j.geomorph.2019.106893
    [15]
    蒋林城. 高密度电阻率法分辨率影响因素研究及应用[D]. 成都: 成都理工大学, 2018.

    Jiang L C. Research on the influencing factors of resolution of high density resistivity method and its application[D]. Chengdu: Chengdu University of Technology, 2018(in Chinese with English abstract).
    [16]
    白旸, 冯兵, 张继锋. 高密度电法在陕西泾阳地区黄土台塬地下水位探测中的应用[J]. 地球科学与环境学报, 2020, 42(6): 791-800. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202006011.htm

    Bai Y, Feng B, Zhang J F. Application of multi-electrode resistivity method in groundwater level detection in loess tableland of Jingtang area, Shanxi, China[J]. Journal of Earth Science and Environment, 2020, 42(6): 791-800(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202006011.htm
    [17]
    陈斌, 汪耀, 胡祥云, 等. 大湾区珠江口海上高密度电法探测[J]. 地球科学, 2020, 45(12): 4550-4562. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202012018.htm

    Chen B, Wang Y, Hu X Y, et al. Marine electrical resistivity tomography research in pearl river estuary of greater bay area[J]. Earth Science, 2020, 45(12): 4550-4562(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202012018.htm
    [18]
    闫亚景, 闫永帅, 赵贵章, 等. 基于高密度电法的天然边坡水分运移规律研究[J]. 岩土力学, 2019, 40(7): 2807-2814. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907036.htm

    Yan Y J, Yan Y S, Zhao G Z, et al. Study on moisture migration in natural slope using high-density electrical resistivity tomography method[J]. Rock and Soil Mechanics, 2019, 40(7): 2807-2814(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907036.htm
    [19]
    焦如义. 高密度电法在水平定向钻穿越孔壁稳定性检测中的应用[J]. 地质科技情报, 2016, 35(2): 108-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201602025.htm

    Jiao R Y. Feasibility study on borehole collapse detection of HDD by high density electrical method[J]. Geological Science and Technology Information, 2016, 35(2): 108-112(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201602025.htm
    [20]
    樊炳森, 郭成超. 高密度电法在水库渗漏检测中的应用[J]. 长江科学院院报, 2019, 36(10): 165-168. doi: 10.11988/ckyyb.20190940

    Fan B S, Guo C C. Application of high density resistivity method to reservoir leakage inspection[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(10): 165-168(in Chinese with English abstract). doi: 10.11988/ckyyb.20190940
    [21]
    王冬青. 高密度电阻率成像法在断裂带探测中的应用研究[D]. 南京: 南京大学, 2013.

    Wang D Q. A study on faults detection using electrical resistivity tomography method[D]. Nanjing: Nanjing University, 2013(in Chinese with English abstract).
    [22]
    李泽邦. 基于三维激光扫描技术在矿山采空区边坡变形监测中的应用研究[D]. 昆明: 昆明理工大学, 2018.

    Li Z B. Application research of slope deformation monitoring in mined-out area based on 3D laser scanning technology[D]. Kunming: Kunming University of Science & Technology, 2018(in Chinese with English abstract).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(618) PDF Downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return