Volume 41 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Li Side, Li Yuanyao, Yin Kunlong, Zhong Yuan, Liu Yi, Xu Yilin. Study on the effect of tower foundation landslide protection measures based on a physical model test[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 209-218. doi: 10.19509/j.cnki.dzkq.2022.0044
Citation: Li Side, Li Yuanyao, Yin Kunlong, Zhong Yuan, Liu Yi, Xu Yilin. Study on the effect of tower foundation landslide protection measures based on a physical model test[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 209-218. doi: 10.19509/j.cnki.dzkq.2022.0044

Study on the effect of tower foundation landslide protection measures based on a physical model test

doi: 10.19509/j.cnki.dzkq.2022.0044
  • Received Date: 12 Aug 2021
  • A large number of high voltage transmission tower foundations crossing mountainous and hilly areas are often located in high-prone slope areas of landslide disasters. Applying appropriate protective measures to improve their stability is the key to ensuring the continuous and safe operation of transmission lines. To study the protection effect of different protection measures on the tower foundation landslide, this paper takes the Yanzi landslide in Badong County, Hubei Province as a geological prototype, designs and produces a physical test model, and carries out physical model tests of the landslide under extreme rainfall conditions(50, 100 mm/h) without protection, applying anti-slide piles and lattice protection. The deformation and failure characteristics of the landslide and the protective effect of different protective measures are revealed from the experimental point of view. The results show that under two extreme conditions, the unprotected landslide experienced the evolution process of slope surface erosion, crack propagation, local collapse and deformation, and overall sliding. The anti-slide pile measures have a significant effect on the overall protection of the landslide. The landslide is in a stable state, the deformation of the tower foundation is small, and the inclination rate of the tower meets the specification, but the slope surface will be scoured and collapsed. Lattice slope protection measures can effectively reduce the risk of slope erosion and slope toe collapse, but the overall stabilization of the tower foundation under continuous heavy rainfall is slightly weaker. The model test results are consistent with the historical deformation of the landslide and the actual treatment effect. The test conclusions can provide a reference for the failure mechanism research and protection engineering design of similar tower foundation landslides.

     

  • loading
  • [1]
    冯德泉. 架空输电线路杆塔基础滑坡处理及分析[J]. 华东科技: 学术版, 2017, 6(3): 231.

    Feng D Q. Treatment and analysis of tower foundation landslide of overhead transmission line[J]. East China Science & Technology, 2017, 6(3): 231(in Chinese with English abstract).
    [2]
    黄晨忱, 殷坤龙, 梁鑫, 等. 极端工况下滑坡区超高压输电线路杆塔基础失稳评估分析[J]. 安全与环境工程, 2021, 28(4): 139-147. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202104020.htm

    Huang C C, Yin K L, Liang X, et al. Analysis of landslide deformation under extreme conditions and its influence on the foundations of UHV transmission lines[J]. Safety and Environmental Engineering, 2021, 28(4): 139-147(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202104020.htm
    [3]
    刘丙财, 焦春茂, 梁健伟, 等. 500 kV鹏深线杆塔基础边坡稳定性综合评估研究[J]. 工程技术研究, 2019, 4(14): 1-5. doi: 10.3969/j.issn.1671-3818.2019.14.001

    Liu B C, Jiao C M, Liang J W, et al. Study on comprehensive evaluation of tower foundation and slope stability for 500 kV Peng -Shen transmission line[J]. Engineering and Technological Research, 2019, 4(14): 1-5(in Chinese with English abstract). doi: 10.3969/j.issn.1671-3818.2019.14.001
    [4]
    俞伟勇, 吴朝峰, 戴建华, 等. 山区输电线路杆塔边坡防护方案选择及应用[J]. 电力勘测设计, 2020, 24(6): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKC202006013.htm

    Yu W Y, Wu C F, Dai J H, et al. Selection and application of slope protection scheme for transmission line tower in mountainous area[J]. Electric Power Survey & Design, 2020, 24(6): 67-72(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DLKC202006013.htm
    [5]
    Tang H M, Hu X L, Xu C, et al. A novel approach for determining landslide pushing force based on landslide-pile interactions[J]. Engineering Geology, 2014, 182: 15-24. doi: 10.1016/j.enggeo.2014.07.024
    [6]
    Richard M I. Scaling and design of landslide and debris-flow experiments[J]. Geomorphology, 2015, 244(S1): 9-20.
    [7]
    任伟中, 陈浩. 滑坡变形破坏机理和整治工程的模型试验研究[J]. 岩石力学与工程学报, 2005, 24(12): 2136-2141. doi: 10.3321/j.issn:1000-6915.2005.12.022

    Ren W Z, Chen H. Model testing research on deformation and fracture mechanism of landslide and its harnessing engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(12): 2136-2141(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2005.12.022
    [8]
    杨登芳, 胡新丽, 徐楚, 等. 基于物理模型试验的多层滑带滑坡变形演化特征[J/OL]. 地质科技通报, 2022: 1-9. doi: 10.19509/j.cnki.dzkq.2021.0069.

    Yang D F, Hu X L, Xu C, et al. Deformation evolution characteristics of multilayer landslide based on physical model test[J/OL]. Bulletin of Geological Science and Technology, 2022: 1-9[2022-01-18]. doi: 10.19509/j.cnki.dzkq.2021.0069 (in Chinese with English abstract)
    [9]
    王旋, 胡新丽, 周昌, 等. 基于物理模型试验的滑坡-抗滑桩位移场变化特征[J]. 地质科技通报, 2020, 39(4): 103-108. doi: 10.19509/j.cnki.dzkq.2020.0413

    Wang X, Hu X L, Zhou C, et al. Model test on the displacement field characteristics of the landslide stabilizing piles[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 103-108(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0413
    [10]
    马俊伟, 唐辉明, 胡新丽, 等. 抗滑桩加固斜坡坡面位移场特征及演化模型试验研究[J]. 岩石力学与工程学报, 2014, 33(4): 679-690. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404004.htm

    Ma J W, Tang H M, Hu X L, et al. Model test study of surface displacement field of slope stabilized with anti sliding piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(4): 679-690(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404004.htm
    [11]
    Li C D, Wu J J, Tang H M, et al. Model testing of the response of stabilizing piles in landslides with upper hard and lower weak bedrock[J]. Engineering Geology, 2016, 204: 65-76. doi: 10.1016/j.enggeo.2016.02.002
    [12]
    魏作安, 李世海, 赵颖. 底端嵌固桩与滑体相互作用的物理模型试验研究[J]. 岩土力学, 2009, 30(8): 2259-2263. doi: 10.3969/j.issn.1000-7598.2009.08.010

    Wei Z A, Li S H, Zhao Y. Model study of interaction mechanism between anti-sliding piles and landslide[J]. Rock and Soil Mechanics, 2009, 30(8): 2259-2263(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2009.08.010
    [13]
    张杰豪, 胡新丽, 徐楚, 等. 基于物理模型试验的多层滑带堆积层滑坡-抗滑桩受力特征[J]. 地质科技通报, 2021, 40(4): 171-178. doi: 10.19509/j.cnki.dzkq.2021.0410

    Zhang J H, Hu X L, Xu C, et al. Mechanical characteristics of anti-slide pile of multi-layer sliding zone accumulation layer based on physical model test. [J]. Bulletin of Geological Science and Technology, 2021, 40(4): 171-178(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0410
    [14]
    高长胜. 边坡变形破坏及抗滑桩与土体相互作用研究[D]. 南京: 南京水利科学研究院, 2007.

    Gao C S. Study on slope deformation and interaction between reinforced piles and soils[D]. Nanjing: Geotechnical Engineering of Nanjing Institute of Hydraulic Research, 2007(in Chinese with English abstract).
    [15]
    韩冬冬, 胡兆江. 格构锚固作用下滑坡应力分布试验研究[J]. 科技创新与应用, 2021, 11(13): 54-56. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY202113015.htm

    Han D D, Hu Z J. An experimental study on the stress distribution of a landslide under the action of lattice structure anchoring[J]. Technology Innovation and Application, 2021, 11(13): 54-56(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY202113015.htm
    [16]
    雷晓锋, 汪班桥, 李楠. 格构梁锚杆加固滑坡地震动力响应分析[J]. 水文地质工程地质, 2020, 47(1): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202001011.htm

    Lei X F, Wang B Q, Li N. A study of the seismic response of landslide to the anchor lattice beam[J]. Hydrogeology & Engineering Geology, 2020, 47(1): 89-95(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202001011.htm
    [17]
    陈春利, 殷跃平, 门玉明, 等. 全长黏结注浆格构锚固工程模型试验研究[J]. 岩石力学与工程学报, 2017, 36(4): 881-889. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201704012.htm

    Chen C L, Yin Y P, Men Y M, et al. Model test on fully grouted lattice beam anchorage[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4): 881-889(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201704012.htm
    [18]
    罗先启, 刘德富, 张振华, 等. 滑坡模型试验理论及其应用[Z]. 上海: 上海交通大学, 2006.

    Luo X Q, Liu D F, Zhang Z H, et al. The theory and application of landslide model test[Z]. Shanghai: Shanghai Jiaotong University, 2006(in Chinese).
    [19]
    罗先启. 滑坡模型试验理论及其应用[D]. 上海: 上海交通大学, 2008.

    Luo X Q. The theory and application of landslide model test[D]. Shanghai: Shanghai Jiaotong University, 2008(in Chinese with English abstract).
    [20]
    曹玲, 罗先启, 程圣国. 千将坪滑坡物理模型试验相似材料研究[J]. 三峡大学学报: 自然科学版, 2007, 29(1): 37-39. https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200701008.htm

    Cao L, Luo X Q, Chen S G. Research on similar material of physical model for Qianjiangping landslide[J]. Journal of China Three Gorges University: Natural Sciences Edition, 2007, 29(1): 37-39(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200701008.htm
    [21]
    徐楚, 胡新丽, 何春灿, 等. 水库型滑坡模型试验相似材料的研制及应用[J]. 岩土力学, 2018, 39(11): 4287-4293. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811046.htm

    Xu C, Hu X L, He C C, et al. Development and application of similar material for reservoir landslide model test[J]. Rock and Soil Mechanics, 2018, 39(11): 4287-4293(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811046.htm
    [22]
    肖捷夫, 李云安, 蔡浚明. 水位涨落作用下藕塘滑坡响应特征模型试验研究[J]. 工程地质学报, 2020, 28(5): 1049-1056. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202005014.htm

    Xiao J F, Li Y A, Cai J M. Model test research on response characteristics of outang landslide under water level fluctuation[J]. Journal of Engineering Geology, 2020, 28(5): 1049-1056(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202005014.htm
    [23]
    Wang H F, Cheng Y P, Yuan L, et al. Similarity model tests of movement and deformation of coal-rock mass below stopes[J]. Mining Science and Technology, 2010, 20(2): 188-192.
    [24]
    Jian W X, Xu Q, Yang H F, et al. Mechanism and failure process of Qianjiangping landslide in the Three Gorges Reservoir, China[J]. Environmental Earth Sciences, 2014, 72(8): 2999-3013.
    [25]
    Hu X L, Tang H M, Li C D, et al. Stability of Huangtupo riverside slumping mass Ⅱ# under water level fluctuation of Three Gorges Reservoir[J]. Journal of Earth Science, 2012, 23(3): 326-334.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(503) PDF Downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return