Volume 41 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Liu Shiqi, Wang Huanling, Gao Chuang, Qu Xiao. Discrete element analysis on influencing factors of deposit morphology of landslide dam[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 165-175. doi: 10.19509/j.cnki.dzkq.2022.0042
Citation: Liu Shiqi, Wang Huanling, Gao Chuang, Qu Xiao. Discrete element analysis on influencing factors of deposit morphology of landslide dam[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 165-175. doi: 10.19509/j.cnki.dzkq.2022.0042

Discrete element analysis on influencing factors of deposit morphology of landslide dam

doi: 10.19509/j.cnki.dzkq.2022.0042
  • Received Date: 02 Aug 2021
  • Landslides are the most important reason of landslide dams and can be formed under the action of earthquakes, rainfall, ice and snow melting water. The deposit shape range of a landslide dam has an important influence on the stability evaluation. In this paper, the effects of sliding distance, sliding surface outlet width, sliding surface angle, riverbed inclination angle and valley shape on the deposit shape of landslide dams are analysed systematically by the discrete element method (DEM). The results are as follows: The sliding distance and outlet width have the greatest influence on the dam height. With increasing outlet width and sliding surface angle, the dam length and width linearly increase and decrease, respectively. Sliding distance can effectively control the velocity of the sliding body and then affect the forward dip angle. The angle of the riverbed mainly affects the length of the dam. The regression analysis of dam height, dam length, upstream and downstream absolute dip tangents and deposit angle tangent shows that the mathematical model fits well, indicating that its shape can be predicted. Two parameters, λ and χ are proposed to describe the deposit characteristics of the landslide dam. The influence of the river valley shape is mainly reflected in the fact that the climbing ability of the sliding body increases with increasing bottom width of the river valley. This study is of great significance for predicting the deposit shape of landslide dams and then evaluating safety and provides a reference for further research on the collapse of landslide lakes.

     

  • loading
  • [1]
    严祖文, 魏迎奇, 蔡红. 堰塞坝形成机理及稳定性分析[J]. 中国地质灾害与防治学报, 2009, 20(4): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200904014.htm

    Yan Z W, Wei Y Q, Cai H. Formation mechanism and stability analysis of barrier dam[J]. The Chinese Journal of Geological Hazard and Control, 2009, 20(4): 59-63(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200904014.htm
    [2]
    Costa J E, Schuster R L. The formation and failure of natural dams[J]. Geological Society of America Bulletin, 1988, 100 (7): 1054-1068. doi: 10.1130/0016-7606(1988)100<1054:TFAFON>2.3.CO;2
    [3]
    郑鸿超, 石振明, 彭铭, 等. 崩滑碎屑体堵江成坝研究综述与展望[J]. 工程科学与技术, 2020, 52(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202002003.htm

    Zheng H C, Shi Z M, Peng M, et al. Review and prospect of the formation mechanism of landslide dams caused by landslide and avalanche debris[J]. Advanced Engineering Sciences, 2020, 52(2): 1-10(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202002003.htm
    [4]
    石振明, 郑鸿超, 彭铭, 等. 考虑不同泄流槽方案的堰塞坝溃决机理分析: 以唐家山堰塞坝为例[J]. 工程地质学报, 2016, 24(5): 741-751. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201605003.htm

    Shi Z M, Zheng H C, Peng M, et al. Breaching mechanism analysis of landslide dams considering different spillway schemes: A case study of Tangjiashan landslide dam[J]. Journal of Engineering Geology, 2016, 24(5): 741-751(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201605003.htm
    [5]
    Fan X M, van Westen C J, Xu Q, et al. Analysis of landslide dams induced by the 2008 Wenchuan Earthquake[J]. Journal of Asian Earth Sciences, 2012, 57: 25-37. doi: 10.1016/j.jseaes.2012.06.002
    [6]
    Xu Q, Fan X M, Huang R Q, et al. Landslide dams triggered by the Wenchuan Earthquake, Sichuan Province, Southwest China[J]. Bulletin of Engineering Geology and the Environment, 2009, 68(3): 373-386. doi: 10.1007/s10064-009-0214-1
    [7]
    张宗亮, 张天明, 杨再宏, 等. 牛栏江红石岩堰塞湖整治工程[J]. 水力发电, 2016, 42(9): 83-86. https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD201609024.htm

    Zhang Z L, Zhang T M, Yang Z H, et al. Remediation project of Hongshiyan Dammed Lake in Niulan River[J]. Water Power, 2016, 42(9): 83-86(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD201609024.htm
    [8]
    Shi Z, Xiong X, Peng M, et al. Risk assessment and mitigation for the Hongshiyan landslide dam triggered by the 2014 Ludian earthquake in Yunnan, China[J]. Landslides, 2017, 14(1): 269-285. doi: 10.1007/s10346-016-0699-1
    [9]
    Fan X M, Xu Q, Alonso-Rodriguez A, et al. Successive landsliding and damming of the Jinsha River in eastern Tibet, China: Prime investigation, early warning, and emergency response[J]. Landslides, 2019, 16(5): 1003-1020. doi: 10.1007/s10346-019-01159-x
    [10]
    钟启明, 陈生水, 单熠博. 金沙江白格堰塞湖溃决过程数值模拟[J]. 工程科学与技术, 2020, 52(2): 29-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202002004.htm

    Zhong Q M, Chen S S, Shan Y B. Numerical modeling of breaching process of Baige dammed lake on Jinsha River[J]. Advanced Engineering Sciences, 2020, 52(2): 29-37(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202002004.htm
    [11]
    黄健, 贺子城, 黄祥, 等. 基于地貌特征的滑坡堰塞坝形成敏感性研究[J]. 地质科技通报, 2021, 40(5): 253-262. doi: 10.19509/j.cnki.dzkq.2021.0040

    Huang J, He Z C, Huang X, et al. Formation sensitivity of landslide dam based on geomorphic characteristic[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 253-262(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0040
    [12]
    彭双麒, 柯灵, 郑体, 等. 基于图像识别的碎屑流颗粒分布特征及碎屑流与房屋相互作用探究[J]. 地质科技通报, 2021, 40(6): 226-235. doi: 10.19509/j.cnki.dzkq.2021.0622

    Peng S Q, Ke L, Zheng T, et al. Particle distribution characteristics of rock avalanche and the interaction between rock avalanche and houses based on image recognition[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 226-235(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0622
    [13]
    Stefanelli C T, Segoni S, Casagli N, et al. Geomorphic indexing of landslide dams evolution[J]. Engineering Geology, 2016, 208: 1-10. doi: 10.1016/j.enggeo.2016.04.024
    [14]
    Yin Y P, Wang F, Sun P. Landslide hazards triggered by the 2008 Wenchuan Earthquake, Sichuan, China[J]. Landslides, 2009, 6(2): 139-152. doi: 10.1007/s10346-009-0148-5
    [15]
    Casagli N, Ermini L, Rosati G. Determining grain size distribution of the material composing landslide dams in the northern Apennines: Sampling and processing methods[J]. Engineering Geology, 2003, 69(1): 83-97.
    [16]
    葛云峰, 李信杰, 杜彬, 等. 多功能高速远程滑坡运动堆积过程物理模型试验装置设计与应用[J]. 地质科技通报, 2020, 39(1): 86-94. doi: 10.19509/j.cnki.dzkq.2020.0110

    Ge Y F, Li X J, Du B, et al. Design and application of multifunctional physical model test device for movement and accumulation process of rapid long-runout landslide[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 86-94(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0110
    [17]
    郝明辉, 许强, 杨磊, 等. 滑坡-碎屑流物理模型试验及运动机制探讨[J]. 岩土力学, 2014, 35(增刊1): 127-132. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S1018.htm

    Hao M H, Xu Q, Yang L, et al. Physical modeling and movement mechanism of landslide-debris avalanches[J]. Rock and Soil Mechanics, 2014, 35(S1): 127-132(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S1018.htm
    [18]
    郝明辉, 许强, 杨兴国, 等. 高速滑坡-碎屑流颗粒反序试验及其成因机制探讨[J]. 岩石力学与工程学报, 2015, 34(3): 472-479. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201503005.htm

    Hao M H, Xu Q, Yang X G, et al. Physical modeling tests on inverse grading of particles in high speed landslide debris[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 472-479(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201503005.htm
    [19]
    王玉峰, 许强, 程谦恭, 等. 复杂三维地形条件下滑坡-碎屑流运动与堆积特征物理模拟实验研究[J]. 岩石力学与工程学报, 2016, 35(9): 1776-1791. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201609007.htm

    Wang Y F, Xu Q, Cheng Q G, et al. Experimental study on the propagation and deposit features of rock avalanche along 3D complex topography[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(9): 1776-1791(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201609007.htm
    [20]
    Wang Y F, Xu Q, Cheng Q G, et al. Spreading and deposit characteristics of a rapid dry granular avalanche across 3D topography: Experimental study[J]. Rock Mechanics and Rock Engineering, 2016, 49(11): 4349-4370. doi: 10.1007/s00603-016-1052-7
    [21]
    Liao H M, Yang X G, Lu G D, et al. Experimental study on the river blockage and landslide dam formation induced by rock slides[J]. Engineering Geology, 2019, 261: 105269. doi: 10.1016/j.enggeo.2019.105269
    [22]
    Wu H, Nian T K, Chen G Q, et al. Laboratory-scale investigation of the 3-D geometry of landslide dams in a U shaped valley[J]. Engineering Geology, 2020, 265: 105428. doi: 10.1016/j.enggeo.2019.105428
    [23]
    闫欣宜, 胡新丽, 付茹. 橡胶纤维-砂混合料力学特性的离散元三轴试验研究[J]. 地质科技通报, 2020, 39(2): 168-174. doi: 10.19509/j.cnki.dzkq.2020.0218

    Yan X Y, Hu X L, Fu R. Triaxial shear test of mechanical characteristic on rubber fiber-sand mixtures based on particle flow code simulation[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 168-174(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0218
    [24]
    王洋海. 基于DEM方法的堰塞体形成过程的数值研究[D]. 西宁: 青海大学, 2019.

    Wang Y H. Numerical study on formation of landslide dam by DEM[D]. Xining: Qinghai University, 2019(in Chinese with English abstract).
    [25]
    罗伟韬. 基于离散元方法的堰塞体堆积性质研究[D]. 北京: 清华大学, 2014.

    Luo W T. Numerical investigation of internal properties in landslide dam by DEM[D]. Beijing: Tsinghua University, 2014(in Chinese with English abstract).
    [26]
    赵高文, 乔建平, 姜元俊, 等. 基于DEM方法的滑坡堰塞坝几何特征分析[J]. 人民黄河, 2019, 41(5): 9-15, 22. https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH201905004.htm

    Zhao G W, Qiao J P, Jiang Y J, et al. Geometric characteristics analysis of landslide dam based on the discrete element method[J]. Yellow River, 2019, 41(5): 9-15, 22(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH201905004.htm
    [27]
    Zhao G W, Jiang Y, Qiao J, et al. Numerical and experimental study on the formation mode of a landslide dam and its influence on dam breaching[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(4): 2519-2533. doi: 10.1007/s10064-018-1255-0
    [28]
    Zhou Y Y, Shi Z M, Zhang Q Z, et al. 3D DEM investigation on the morphology and structure of landslide dams formed by dry granular flows[J]. Engineering Geology, 2019, 258: 105151. doi: 10.1016/j.enggeo.2019.105151
    [29]
    Zhou Y Y, Shi Z M, Zhang Q Z, et al. Damming process and characteristics of landslide-debris avalanches[J]. Soil Dynamics and Earthquake Engineering, 2019, 121: 252-261. doi: 10.1016/j.soildyn.2019.03.014
    [30]
    Zhou J W, Cui P, Fang H. Dynamic process analysis for the formation of Yangjiagou landslide-dammed lake triggered by the Wenchuan Earthquake, China[J]. Landslides, 2013, 10(3): 331-342. doi: 10.1007/s10346-013-0387-3
    [31]
    Zhao T, Dai F, Xu N. Coupled DEM-CFD investigation on the formation of landslide dams in narrow rivers[J]. Landslides, 2017, 14(1): 189-201. doi: 10.1007/s10346-015-0675-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(416) PDF Downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return