Volume 41 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Zou Tongtong, Liu Xiaoyi, Liu Jinquan, Yuan Hailiang, Lu Yubin, Zhang Wanhu. Outlier detection method for geotechnical engineering based on MetaOD model selection[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 239-245. doi: 10.19509/j.cnki.dzkq.2022.0041
Citation: Zou Tongtong, Liu Xiaoyi, Liu Jinquan, Yuan Hailiang, Lu Yubin, Zhang Wanhu. Outlier detection method for geotechnical engineering based on MetaOD model selection[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 239-245. doi: 10.19509/j.cnki.dzkq.2022.0041

Outlier detection method for geotechnical engineering based on MetaOD model selection

doi: 10.19509/j.cnki.dzkq.2022.0041
  • Received Date: 27 May 2021
  • The geotechnical engineering field and indoor parameter test data are the foundation of engineering construction, design and evaluation. The existence of abnormal data often misleads the determination of parameters such as construction and design. Data anomaly detection is the most basic but extremely important task to ensure the safety and reliability of a project. Aiming at the blindness of detection due to the lack of model selection in traditional anomaly detection algorithms, this paper proposes an anomaly detection model system based on a combination of meta-learning outlier detection (MetaOD) and data mining algorithms. The system first selects the initial model class and its parameters suitable for different data types according to the characteristics of the data, averages the selected parameters of the same type of algorithm, and then uses the selected algorithm to diagnose data anomalies, thereby improving the anomaly accuracy of detection. To evaluate the effectiveness of the model, the machine learning test dataset (glass dataset) proposed by the University of California Irvine, is used for test analysis. The results show that the accuracy rate of anomaly detection using this model system reaches 96.41%, which is much higher than that of other detection algorithms. Finally, the model system is applied to the uniaxial compressive strength dataset of the Macau granite and the groundwater monitoring data of the Junchang Tunnel to carry out anomaly detection and analysis and to identify 9 and 10 abnormal points, respectively.

     

  • loading
  • [1]
    Bieniawski Z T. The point-load test in geotechnical practice[J]. Engineering Geology, 1975, 9(1): 1-11. doi: 10.1016/0013-7952(75)90024-1
    [2]
    Cargill J S, Shakoor A. Evaluation of empirical methods for measuring the uniaxial compressive strength of rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon, 1990, 27(6): 495-503. https://www.sciencedirect.com/science/article/pii/014890629091001N
    [3]
    柴波, 陶阳阳, 杜娟, 等. 基于Hoek-Brown准则的节理岩体能量参数估算[J]. 地质科技通报, 2020, 39(1): 78-85. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001010.htm

    Chai B, Tao Y Y, Du J, et al. Energetics parameter estimation of jointed rock mass based on Hoek-Brown failure criterion[J]. Bulletin of Geological Scienceand Technology, 2020, 39(1): 78-85(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001010.htm
    [4]
    李宗强, 李居铜, 张爱勤, 等. 土木工程试验方法与数据处理[M]. 哈尔滨: 哈尔滨工业大学出版社, 2014.

    Li Z Q, Li J T, Zhang A Q, et al. Civil engineering test methods and data processing[M]. Harbin: Harbin Institute of Technology Press, 2014(in Chinese).
    [5]
    马祥配, 刘福臣. 岩土工程检测常见问题处理[J]. 中国勘察设计, 2013(3): 96-98. https://www.cnki.com.cn/Article/CJFDTOTAL-KCSJ201303031.htm

    Ma X P, Liu F C. Handling of common problems in geotechnical engineering inspection[J]. China Engineering Consulting, 2013(3): 96-98(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCSJ201303031.htm
    [6]
    杨威. 郴宁高速公路万华岩边坡监测与稳定性评价方法研究[D]. 长沙: 中南大学, 2013.

    Yang W. Study of monitoring methods and stability evaluation method of Wanhuayan slope in Chenning highway[D]. Changsha: Central South University, 2013(in Chinese).
    [7]
    李明. 盾构隧道长期健康监测与评价[D]. 北京: 中国科学院大学, 2015.

    Li M. Long-term health monitoring and evaluation of shield tunnels[D]. Beijing: University of Chinese Academy of Sciences, 2015(in Chinese).
    [8]
    刘鸿飞, 刘俊芳, 苏跃宏, 等. 无侧限抗压强度异常值处理新方法的研究[J]. 岩土工程学报, 2020, 42(增刊1): 137-140. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S1027.htm

    Liu H F, Liu J F, Su Y H, et al. New method for dealing with unconfined compressive strength outliers[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 137-140(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S1027.htm
    [9]
    Mu H Q, Yuen K V. Novel outlier-resistant extended Kalman filter for robust online structural identification[J]. Journal of Engineering Mechanics, 2015, 141(1): 04014100. doi: 10.1061/(ASCE)EM.1943-7889.0000810
    [10]
    Ramaswamy S, Rastogi R, Shim K. Efficient algorithms for mining outliers from large data sets[C]//Anon. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. [S.l.]: [s.n.], 2000: 427-438.
    [11]
    Breunig M M, Kriegel H P, Ng R T, et al. LOF: Identifying density-based local outliers[C]//Anon. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. [S.l.]: [s.n.], 2000: 93-104.
    [12]
    谭文侃, 叶义成, 胡南燕, 等. LOF与改进SMOTE算法组合的强烈岩爆预测[J]. 岩石力学与工程学报, 2021, 40(6): 1186-1194. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106010.htm

    Tan W K, Ye Y C, Hu N Y, et al. Severe rock burst prediction based on the combination of LOF and improved SMOTE algorithm[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1186-1194(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106010.htm
    [13]
    He Z, Xu X, Deng S. Discovering cluster-based local outliers[J]. Pattern Recognition Letters, 2003, 24(9/10): 1641-1650.
    [14]
    Tang J, Chen Z, Fu A W C, et al. Enhancing effectiveness of outlier detections for low density patterns[C]//Anon. Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin, Heidelberg: Springer, 2002: 535-548.
    [15]
    Papadimitriou S, Kitagawa H, Gibbons P B, et al. Loci: Fast outlier detection using the local correlation integral[C]//Anon. Proceedings 19th International Conference on Data Engineering (Cat. No. 03CH37405). [S.l.]: IEEE, 2003: 315-326.
    [16]
    Liu F T, Ting K M, Zhou Z H. Isolation forest[C]//Anon. 2008 Eighthieee International Conference on Data Mining. [S.l.]: IEEE, 2008: 413-422.
    [17]
    Zhao Y, Rossi R A, Akoglu L. Automating outlier detection via meta-learning[J]. arXiv preprint arXiv: 2009.10606, 2020.
    [18]
    Wolpert D H, Macready W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82. doi: 10.1109/4235.585893
    [19]
    Bache K, Lichman M. UCI Machine learning repository (2013)[EB/OL]. [2013-03-27](2021-05-10). Available: http://archive.ics.uci.edu/ml
    [20]
    Chen L, Guo Z, Yin K, et al. The influence of land use and land cover change on landslide susceptibility: a case study in Zhushan Town, Xuan′en County (Hubei, China)[J]. Natural hazards and earth system sciences, 2019, 19(10): 2207-2228. doi: 10.5194/nhess-19-2207-2019
    [21]
    周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.

    Zhou Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016(in Chinese).
    [22]
    Kriegel H P, Schubert M, Zimek A. Angle-based outlier detection in high-dimensional data[C]//Anon. Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. [S.l.]: [s.n.], 2008: 444-452.
    [23]
    柏道远, 李彬, 李银敏, 等. 湖南常德-安仁断裂印支期构造运动分段性: 来自花岗岩的约束[J]. 地质科技通报, 2021, 40(5): 173-187. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105019.htm

    Bai D Y, Li B, Li Y M, et al. Segmentation of the movement in Indosinian of the Changde-Anren fault in Hunan: Constraints from granite[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 173-187(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105019.htm
    [24]
    Ng I T, Yuen K V, Lau C H. Predictive model for uniaxial compressive strength for Grade Ⅲ granitic rocks from Macao[J]. Engineering Geology, 2015, 199: 28-37. doi: 10.1016/j.enggeo.2015.10.008
    [25]
    姚文礼. 四川盆地须家河组致密砂岩物源体系的控储作用[J]. 地质科技通报, 2021, 40(5): 223-230. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105023.htm

    Yao W L. Reservoir control of tight sandstone provenance system in Xujiahe formation, Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 223-230(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105023.htm
    [26]
    Goldstein M, Dengel A. Histogram-based outlier score (hbos): A fast unsupervised anomaly detection algorithm[C]//Anon. KI-2012: Poster and demo track. [S.l.]: [s.n.], 2012: 59-63.
    [27]
    江欣悦, 李静, 郭林, 等. 豫北平原浅层地下水化学特征与成因机制[J]. 地质科技通报, 2021, 40(5): 290-300. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105030.htm

    Jiang X Y, Li J, Guo L, et al. Chemical characteristics and formation mechanism of shallow ground water in the northern Henan Plain[J]. Bulletin of Geological Scienceand Technology, 2021, 40(5): 290-300(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105030.htm
    [28]
    Pevn T. Loda: Lightweight on-line detector of anomalies[J]. Machine Learning, 2016, 102(2): 275-304. doi: 10.1007/s10994-015-5521-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(571) PDF Downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return