Volume 40 Issue 3
May  2021
Turn off MathJax
Article Contents
Guan Donglin, Wen Guojun, Wang Yudan, Tong Zhiwei, Wu Lingling, Luo Yaokun. 3D reconstruction and visualization for laser drilling hole on rock based on line laser scanning[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 173-183. doi: 10.19509/j.cnki.dzkq.2021.0310
Citation: Guan Donglin, Wen Guojun, Wang Yudan, Tong Zhiwei, Wu Lingling, Luo Yaokun. 3D reconstruction and visualization for laser drilling hole on rock based on line laser scanning[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 173-183. doi: 10.19509/j.cnki.dzkq.2021.0310

3D reconstruction and visualization for laser drilling hole on rock based on line laser scanning

doi: 10.19509/j.cnki.dzkq.2021.0310
  • Received Date: 10 Aug 2020
  • The laser drilling hole on rock has a complex pattern, characterized with a generally small diameter and high roughness, so it is difficult to measure the parameters by traditional methods.Therefore, in order to precisely detect the drilling hole and expediently study the shape of the hole, a model of the laser drilling hole based on line laser scanning and reserve modeling is proposed.Specifically, to get the 3D coordinate of the drilling hole, which consists of the original point cloud, a line laser scanning stage is designed and the spatial coordinate system is established.Then, point cloud processing, including the valid points removal and point cloud registration, is implemented in MATLAB, and the removal of invalid points is realized by sequential search, also, based on the iterative closest point(ICP) algorithm, the multi-view point cloud registration is divided into two stages: the initial registration and the precise registration.Finally, based on Delaunay triangulation and surface reconstruction, the model reconstruction and 3D visualization of the drilling hole are accomplished, which provides a good matrix for drilling hole measurement.What's more, compared with the results from the model reconstructed, the titration test and cutting method are used to measure the volume and obtain the contour line of the real drilling hole, to evaluate the accuracy of the drilling hole model.The experimental results show that the error between the models reconstructed and the real drilling holes is less than 4%, hence the reconstructed model can meet the requirements of measuring the parameters of the laser drilling hole on the rock, and the method proposed is feasible.Furthermore, this approach belongs to a non-contact and non-destructive detection method accompanied with good repeatability in comparison with existing methods.

     

  • loading
  • [1]
    Xu Z Y, Yamashita Y, Reed C B. Two-dimensional modeling of laser spallation drilling of rocks[C]//ICALEO 2005: 24th International Congress on Laser Materials Processing and Laser Microfabrication, 2005.
    [2]
    李璐. 激光辅助钻井破岩机理及可钻性研究[D]. 山东: 中国石油大学, 2015.

    Li L. Mechanism of removing rock by laser and the study on drillability[D]. Shandong: China University of Petroleum, 2015(in Chinese with English abstract).
    [3]
    Bharatish A, Kumar B K, Rajath R, et al. Investigation of effect of CO2 laser parameters on drilling characteristics of rocks encountered during mining-ScienceDirect[J]. Journal of King Saud University-Engineering Sciences, 2019, 31(4): 395-401. doi: 10.1016/j.jksues.2017.12.003
    [4]
    Li M Y, Han B, Zhang S Y, et al. Investigation into Laser Perforation of Rock for Petroleum Exploitation[J]. Lasers in Engineering, 2018, 41(1): 73-99.
    [5]
    Zhang H, Yin S D. Poroelastoplastic borehole modeling by tangent stiffness matrix method[J]. International Journal of Geomechanics, 2020, 20(3): 1-11. http://www.sciencedirect.com/science/article/pii/S2405656120300808
    [6]
    张建芳, 范柱国. 基于ArcGIS的钻孔三维可视化展示及地质体的建模过程[J]. 中国水运, 2020, 20(4): 35-36. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX202004017.htm

    Zhang J F, Fan Z G. 3D visualization display of borehole and modeling process of geological body based on ArcGIS[J]. China Water Transport, 2020, 20(in Chinese with English abstrac). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX202004017.htm
    [7]
    李程, 吴志春, 杨羿, 等. 基于GOCAD的钻孔数据建模方法与实例研究[J]. 江西科学, 2019, 37(1): 125-130, 135. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKX201901026.htm

    Li C, Wu Z C, Yang Y, et al. Drilling data modeling method and case study based on GOCAD[J]. Jiangxi Science, 2019, 37(1): 125-130, 135(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JSKX201901026.htm
    [8]
    张夏林, 师志龙, 吴冲龙, 等. 基于移动设备的野外地质大数据智能采集和可视化技术[J]. 地质科技通报, 2020, 39(4): 21-28. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9995.shtml

    Zhang X L, Shi Z L, Wu C L. Intelligent data acquisition and visualizati-on technology of field geology based on mobile devices[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 21-28(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract9995.shtml
    [9]
    万剑华, 王朝, 刘善伟, 等. 倾斜摄影测量构建地质数字露头[J]. 地质科技情报, 2019, 38(1): 258-264. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901029.htm

    Wan J H, Wang C, Liu S W, et al. Reconsting geological digital outcrops with oblique photogrammetry[J]. Geological Science and Technology Information, 2019, 38(1): 258-264(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901029.htm
    [10]
    Lemon A M, Jones N L. Building solid models from boreholes and user defined cross section[J]. Computers&Geosciences, 2003, 29(5): 547-555. http://www.sciencedirect.com/science/article/pii/S0098300403000517
    [11]
    田宜平, 吴冲龙, 翁正平, 等. 地质大数据可视化关键技术探讨[J]. 地质科技通报, 2020, 39(4): 29-36. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9996.shtml

    Tian Y P, Wu C L, Weng Z P. Key technologies of geological big data visualization[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 29-36(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract9996.shtml
    [12]
    迟克浩, 陈梦雯, 吴彦达, 等. 基于双三角测距原理的双线激光三维扫描系统的研制[J]. 物理与工程, 2019, 29(6): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-GKWL201906013.htm

    Chi K H, Chen M W, Wu Y D, et al. Development of three-dimensional scanner with double line lasers based on triangle measurement method of distance[J]. Physics and Engineering, 2019, 29(6): 71-76(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GKWL201906013.htm
    [13]
    Zhao Y H, Supri T B M, Song Y, et al. A new static method of calibration for low-cost laser triangulation systems[J]. Measurement, 2020, 156: 1-9. http://www.sciencedirect.com/science/article/pii/S0263224120301500
    [14]
    Yao B, Cai Z, Lu J, et al. Novel laser triangulation measurement method for screw rotor profile under multi-factor constraints[J]. Measurement, 2020, 152: 1-14. http://www.sciencedirect.com/science/article/pii/S0263224119311819
    [15]
    李现坤, 曾德标, 孟华林, 等. 基于2D激光扫描的基准检测技术研究[J]. 机械制造与自动化, 2020, 49(1): 195-197. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZHD202001053.htm

    Li X K, Zeng D B, Meng H L, et al. Research on benchmark detection technology based on 2D line laser scanning[J]. Machine Building & Automation, 2020, 49(1): 195-197(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZZHD202001053.htm
    [16]
    Yao C L, Ying L, Rui S, et al. Multi-view point cloud registration with adaptive convergence threshold and its application in 3D model retrieval[J]. Multimedia Tools and Applications, 2019, 79(1): 793-810. doi: 10.1007/s11042-019-7524-5
    [17]
    薛耀红, 赵建平, 蒋振刚, 等. 点云数据配准及曲面细分技术[M]. 北京: 国防工业出版社, 2011.

    Xue Y H, Zhao J P, Jiang Z G, et al. Point cloud data registration and surface subdivision[M]. Beijing: Nation Defense Industry Press, 2011(in Chinese).
    [18]
    徐兆阳. 三维重建中的点云配准技术研究[D]. 四川: 电子科技大学, 2020.

    Xu Z Y. Research on point cloud registration in 3D reconstruction[D]. Sichuan: University of electronic science and technology, 2020(in Chinese with English abstract).
    [19]
    Li P, Wang R S, Wang Y X, et al. Fast method of registration for 3D RGB point cloud with improved four initial point pairs algorithm[J]. Sensors, 2020, 20(1): 1-25. doi: 10.1109/JSEN.2019.2959158
    [20]
    Perumal L. New approaches for Delaunay triangulation and optimization[J]. Heliyon, 2019, 5(8): 1-18. http://www.sciencedirect.com/science/article/pii/S2405844019359791
    [21]
    Kim J, Cho J. Delaunay triangulation-based spatial clustering technique for enhanced adjacent boundary detection and segmentation of LiDAR 3D point clouds[J]. Sensors, 2019, 19(18): 1-12. doi: 10.1109/JSEN.2019.2920795
    [22]
    孔德武. 点云数据的三角剖分及计算机三维重建[J]. 西南师范大学学报: 自然科学版, 2019, 44(7): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201907015.htm

    Kong D W. Triangulation and computer three-dimensional reconstruction of point cloud data[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(7): 87-92(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201907015.htm
    [23]
    张蓓蓓, 李国清, 冯梅, 等. 基于Delaunay三角剖分的多尺度POI提取技术研究与实现[J]. 测绘与空间地理信息, 2018, 41(6): 119-121, 125. doi: 10.3969/j.issn.1672-5867.2018.06.035

    Zhang B B, Li G Q, Feng M. Extraction technology research and implementation of multi-scale POI based on Delaunay triangulation[J]. Geomatics & Spatial Information Technology, 2018, 41(6): 119-121, 125(in Chinese with English abstract). doi: 10.3969/j.issn.1672-5867.2018.06.035
    [24]
    成思源, 杨雪荣. Geomagic studio逆向建模技术及应用[M]. 北京: 清华大学出版社, 2016.

    Cheng S Y, Yang X R. Reverse modeling technology and application of Geomagic studio[M]. Beijing: Tsinghua University Press, 2016(in Chinese).
    [25]
    Bringmann K, Künnemann M, Nusser A. Walking the dog fast in practice: Algorithm engineering of the Fréchet distance[J]. ArXiv, 2019, 17(1): 1-34. http://arxiv.org/abs/1901.01504
    [26]
    Wylie T R, Zhu B H. Intermittent map matching with the discrete fréchet distance[J]. ArXiv, 2014, 1409(2456): 1-11. http://arxiv.org/abs/1409.2456
    [27]
    Wylie T R. The discrete Fréchet distance and applications[D]. Bozeman Montana USA: Bozeman Montena State University, 2013.
    [28]
    朱洁, 黄樟灿, 彭晓琳. 基于离散Fréchet距离的判别曲线相似性的算法[J]. 武汉大学学报: 理学版, 2009, 55(2): 227-232. doi: 10.3321/j.issn:1671-8836.2009.02.020

    Zhu J, Huang Z C, Peng X L. Curve similarity judgment based on the discrete fréchet distance[J]. Journal of Wuhan University (Natural Science Edition), 2009, 55(2)(in Chinese with English abstract). doi: 10.3321/j.issn:1671-8836.2009.02.020
    [29]
    Mu Y S, Liu X D, Wang L D. A Pearson's correlation coefficient-based decision tree and its parallel implementation[J]. Information Sciences, 2017, 435: 40-58. http://smartsearch.nstl.gov.cn/paper_detail.html?id=afb17e37ca1fae5c9927ae93a6d209f8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(959) PDF Downloads(670) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return