Volume 40 Issue 3
May  2021
Turn off MathJax
Article Contents
Xie Jingyu, Lu Hongzhi, Chen Lei, Jin Xianpeng, Wang Dan, Fu Guoqiang. Micro scopic heterogeneity and mechanical anisotropy of the laminated shale in Longmaxi Formation[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 67-77. doi: 10.19509/j.cnki.dzkq.2021.0302
Citation: Xie Jingyu, Lu Hongzhi, Chen Lei, Jin Xianpeng, Wang Dan, Fu Guoqiang. Micro scopic heterogeneity and mechanical anisotropy of the laminated shale in Longmaxi Formation[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 67-77. doi: 10.19509/j.cnki.dzkq.2021.0302

Micro scopic heterogeneity and mechanical anisotropy of the laminated shale in Longmaxi Formation

doi: 10.19509/j.cnki.dzkq.2021.0302
  • Received Date: 29 Nov 2020
  • As a clean energy, the commercial development and utilization of shale gas affect the global energy landscape. The microscopic heterogeneity and mechanical anisotropy of laminated shale have crucial significance for studying wellbore stability and the hydraulic fracture (HF) geometry. In order to provide experimental and theoretical bases for the optimization of drilling and fracturing parameters in the field, the microscopic heterogeneity and mechanical anisotropy of Longmaxi laminated shale were studied. The uniaxial compressive experiments, field-emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM) observations and wave velocity tests were conducted on shale samples cored at different angles. Moreover, the effect of microscopic heterogeneity and mechanical anisotropy on the geometry of HFs was discussed. The results suggest that the bedding planes influence microscopic heterogeneity and mechanical anisotropy in the Longmaxi laminated shales. For the microscopic heterogeneity, with increasing angle between observation direction and bedding planes, the development degree of micropores increased. As observed from FE-SEM and AFM images, the distribution of mineralogical components and organic matter-hosted pores shows strong heterogeneity in microscopic scale, indicative of increasing gas storage capacity (Fig. 1, 2). FE-SEM images of shale samples with different coring angles (β is the angle between the observation direction and bedding direction in the FE-SEM images. The figures show that in the direction parallel to the beddings, the shale matrix is cemented well. With increasing bedding angle, the development degree of micro pore structure increases gradually) AFM images of shale samples with different coring angles (γ is the angle between the observation direction and the bedding direction in the AFM tests. The results are similar to the FE-SEM tests) As for the mechanical anisotropy, under the uniaxial compression, the failure mode and mechanical parameters were different due to the different bedding angles. With increasing angle (θ) between the loading direction and bedding direction, the failure mode gradually changed from tensile failure perpendicular to the bedding planes, to shear failure, and then to the "splitting-shearing" mixed failure (Fig. 3). With increasing θ, the uniaxial compressive strength and Poisson's ratio of Longmaxi laminated shales display a "U-shaped" anisotropic model that is characterized by a first decrease and a subsequent increase. While the elastic modulus and S-P wave velocity shows a decreasing trend, the bedding planes of shale with weak cementation will be damaged before the rock matrix, which will significantly affect mechanical properties of the whole rock. The microscopic heterogeneity of shales influences the anisotropy of mechanical properties to a certain extent. The varying development degree of micropore structure in different bedding directions will indirectly affect the mechanical properties by affecting the strain and cementation degree of matrix during the uniaxial compression experiments. Typical failure patterns and fracture geometry of shale samples with different coring angles Effect of shale anisotropy on the initiation of hydraulic fracture (a.The HF propagates along the bedding plane near the well after initiation; b.The HF propagates directly to the sample boundary after initiation) The microscopic heterogeneity and mechanical anisotropy of shales can affect the HF behavior during hydraulic fracturing, and the fluid seepage flow paths under the shutoff of pumps. The development of natural fracture planes near the wellbore will induce HF propagation. It is suggested that micro-fractures are relatively developed in the direction perpendicular to beddings. The developed micro-fractures not only create conditions for the initiation of HFs, but also provide channels for the seepage of fracturing fluid after the pump is stopped. The results provide theoretical basis for the parameter optimization of laminated shale hydraulic fracturing.

     

  • loading
  • [1]
    Mayerhofer M J, Lolon E P, Warpinski N R, et al. What is simulated reservoir volume?[M]. Fort Worth: Society of Petroleum Engineers, 2008.
    [2]
    苗凤彬, 彭中勤, 汪宗欣, 等. 雪峰隆起西缘下寒武统牛蹄塘组页岩裂缝发育特征及主控因素[J]. 地质科技通报, 2020, 39(2): 31-42. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9972.shtml

    Miao F B, Peng Z Q, Wang Z X, et al. Development characteristics and major controlling factors of shale fractures in the Lower Cambrian Niutitang Formation western margin of Xuefeng Uplift[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 31-42(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract9972.shtml
    [3]
    Tan P, Jin Y, Hou B, et al. Experiments and analysis on hydraulic sand fracturing by an improved true tri-axial cell[J]. Journal of Petroleum Science and Engineering, 2017, 158: 766-774. doi: 10.1016/j.petrol.2017.09.004
    [4]
    何柏, 谢凌志, 李凤霞, 等. 龙马溪页岩各向异性变形破坏特征及其机理研究[J]. 中国科学: 物理学力学天文学, 2017, 47(11): 107-118. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201711012.htm

    He B, Xie L Z, Li F X, et al. Anisotropic mechanism and characteristics of deformation and failure of Longmaxi shale[J]. Scientia Sinica: Physica, Mechanica and Astronomica, 2017, 47(11): 107-118(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201711012.htm
    [5]
    侯振坤, 杨春和, 郭印同, 等. 单轴压缩下龙马溪组页岩各向异性特征研究[J]. 岩土力学, 2015, 36(9): 2541-2550. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201509015.htm

    Hou Z K, Yang C H, Guo Y T, et al. Experimental study on anisotropic properties of Longmaxi Formation shale under uniaxial compression[J]. Rock and Soil Mechanics, 2015, 36(9): 2541-2550(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201509015.htm
    [6]
    汪虎, 郭印同, 王磊, 等. 不同深度页岩储层力学各向异性的试验研究[J]. 岩土力学, 2017, 38(9): 2496-2506. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201709006.htm

    Wang H, Guo Y T, Wang L, et al. An experimental study on mechanical anisotropy of shale reservoirs at different depths[J]. Rock and Soil Mechanics, 2017, 38(9): 2496-2506(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201709006.htm
    [7]
    陈天宇, 冯夏庭, 张希巍, 等. 黑色页岩力学特性及各向异性特性实验研究[J]. 岩石力学与工程学报, 2014, 33(9): 1772-1779. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409007.htm

    Chen T Y, Feng X T, Zhang X W, et al. Experimental study on mechanical and anisotropic properties of black shale[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1772-1779(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409007.htm
    [8]
    Geng Z, Chen M, Jin Y, et al. Experimental study of brittleness anisotropy of shale in tri-axial compression[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 510-518. doi: 10.1016/j.jngse.2016.10.059
    [9]
    Wang Y, Li C H. Investigation of the P-and S-wave velocity anisotropy of a Longmaxi Formation shale by real-time ultrasonic and mechanical experiments under uniaxial deformation[J]. Journal of Petroleum Science and Engineering, 2017, 158: 253-267. doi: 10.1016/j.petrol.2017.08.054
    [10]
    张福, 黄艺, 蓝宝峰, 等. 正安地区五峰组-龙马溪组页岩储层特征及控制因素[J]. 地质科技通报, 2021, 40(1): 49-56. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10091.shtml

    Zhang F, Huang Y, Lan B F, et al. Characteristics and controlling factors of shale reservoir in Wufeng Formation-Longmaxi Formation of the Zheng'an area[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 49-56(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract10091.shtml
    [11]
    田鹤, 曾联波, 舒志国. 页岩横向各向同性地应力预测模型中弹性参数的确定方法[J]. 地质力学学报, 2019, 25(12): 166-176. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201902058.htm

    Tian H, Zeng L B, Shu Z G. Method for determining elastic parameters for the prediction model of shale transversely isotropic geostresss[J]. Journal of Geomechanics, 2019, 25(2): 166-176(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201902058.htm
    [12]
    中国水电顾问集团成都勘测设计研究院. DL/T5368-2007水电水利工程岩石试验规程[S]. 北京: 科学出版社, 2007.

    Power China Chengdu Engineering Corporation Limited. DL/T5368-2007 Code for rock tests of hydroelectric and water conservancy engineering[S]. Beijing: Science Press, 2007(in Chinese).
    [13]
    张宝鑫, 傅雪海, 张苗, 等. 山西省域煤系泥页岩孔隙分形特征[J]. 地质科技情报, 2019, 38(4): 82-92. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904010.htm

    Zhang B X, Fu X H, Zhang M, et al. Fractal features of coal measures shale in Shanxi province[J]. Geological Science and Technology Information, 2019, 38(4): 82-92(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904010.htm
    [14]
    Fu Y H, Jiang Y Q, Wang Z L, et al. Non-connected pores of the Longmaxi shale in southern Sichuan Basin of China[J]. Marine and Petroleum Geology, 2019, 110: 420-433. doi: 10.1016/j.marpetgeo.2019.07.014
    [15]
    Zhu H H, Zhang T S, Liang X, et al. Insight into the pore structure of Wufeng-Longmaxi black shales in the south Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2018, 171: 1279-1291. doi: 10.1016/j.petrol.2018.08.061
    [16]
    苟启洋, 徐尚, 郝芳, 等. 基于成像测井的泥页岩裂缝研究: 以焦石坝区块为例[J]. 地质科技通报, 2020, 39(6): 193-200. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10085.shtml

    Gou Q Y, Xu S, Hao F, et al. Research on mud shale fractures based on image logging: A case study of Jiaoshiba area[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 193-200(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract10085.shtml
    [17]
    Sundararajan S, Bhushan B, Namazu T, et al. Mechanical property measurements of nanoscale structures using an atomic force microscope[J]. Ultramicroscopy, 2002, 91(1): 111-118. http://www.ncbi.nlm.nih.gov/pubmed/12211458
    [18]
    彭力, 宁伏龙, 李维, 等. 用原子力显微镜研究温度和接触界面对THF水合物形貌的影响[J]. 中国科学: 物理学力学天文学, 2019, 49(3): 144-152. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201903011.htm

    Peng L, Ning F L, Li W, et al. Investigation on the effect of growth temperature and contact interface on surface characteristics of THF clathrate hydrates by atomic force microscopy[J]. Scientia Sinica: Physica, Mechanica and Astronomica, 2019, 49(3): 144-152(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201903011.htm
    [19]
    白永强, 刘美, 杨春梅, 等. 基于AFM表征的页岩孔隙特征及其与解析气量关系[J]. 吉林大学学报: 地球科学版, 2016, 46(5): 1332-1341. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201605007.htm

    Bai Y Q, Liu M, Yang C M, et al. AFM based pore characterization of shales and its relation to the analytical gas[J]. Journal of Jilin University: Earth Science Edition, 2016, 46(5): 1332-1341(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201605007.htm
    [20]
    蔡潇. 原子力显微镜在页岩微观孔隙结构研究中的应用[J]. 电子显微学报, 2015, 34(4): 326-331. doi: 10.3969/j.issn.1000-6281.2015.04.010

    Cai X. Application of atomic force microscopy in the study of microscopic pore structure of shale[J]. Journal of Chinese Electron Microscopy Society, 2015, 34(4): 326-331(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6281.2015.04.010
    [21]
    袁和义, 陈平. 基于波速测量的龙马溪组页岩的各向异性研究[J]. 地下空间与工程学报, 2015, 43(2): 1200-1205. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201705009.htm

    Yuan H Y, Chen P. Study on Longmaxi Formation shale anisotropy based on acoustic wave velocity measurement[J]. Chinese Journal of Underground Space and Engineering, 2015, 43(2): 1200-1205(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201705009.htm
    [22]
    Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. doi: 10.1306/12190606068
    [23]
    Raef A, Kamari A, Totten M, et al. The dynamic elastic and mineralogical Brittleness of Woodford shale of the Anadarko Basin: Ultrasonic P-wave and S-wave velocities, XRD-Mineralogy and predictive models[J]. Journal of Petroleum Science and Engineering, 2018, 169: 33-43. doi: 10.1016/j.petrol.2018.05.052
    [24]
    Zhang G Q, Fan T G. A high-stress tri-axial cell with pore pressure for measuring rock properties and simulating hydraulic fracturing[J]. Measurement, 2014, 49: 236-245. doi: 10.1016/j.measurement.2013.11.001
    [25]
    谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003-3010. doi: 10.3321/j.issn:1000-6915.2005.17.001

    Xie H P, Ju Y, Li L Y. Energy analysis and criteria for structural failure of rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003-3010(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2005.17.001
    [26]
    Griffith A A. The phenomena of rupture and flow in solid[J]. Philosophical Transactions of the Royal Society of London, 1920, A221: 163-198. http://adsabs.harvard.edu/abs/1921rspta.221..163g
    [27]
    Xie J Y, Cheng W, Wang R J, et al. Experiments and analysis on the influence of perforation mode on hydraulic fracture geometry in shale formation[J]. Journal of Petroleum Science and Engineering, 2018, 168: 133-147. doi: 10.1016/j.petrol.2018.05.017
    [28]
    Liu B H, Jin Y, Chen M. Influence of vugs in fractured-vuggy carbonate reservoirs on hydraulic fracture propagation based on laboratory experiments[J]. Journal of Structural Geology, 2019, 124: 143-150. doi: 10.1016/j.jsg.2019.04.007
    [29]
    翟松韬, 吴刚, 张渊, 等. 单轴压缩下高温盐岩的力学特性研究[J]. 岩石力学与工程学报, 2014, 33(1): 105-111. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201401012.htm

    Zhai S T, Wu G, Zhang Y, et al. Mechanical characteristics of salt rock subjected to uniaxial compression and high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 105-111(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201401012.htm
    [30]
    Cheng W, Jin Y, Chen M. Reactivation mechanism of natural fractures by hydraulic fracturing in naturally fractured shale reservoirs[J]. Journal of Natural Gas Science and Engineering. 2015, 23: 431-439. doi: 10.1016/j.jngse.2015.01.031
    [31]
    陈林, 陈孝红, 张保民, 等. 鄂西宜昌地区五峰组-龙马溪组页岩储层特征及其脆性评价[J]. 地质科技通报, 2020, 39(2): 54-61. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9974.shtml

    Chen L, Chen X H, Zhang B M, et al. Reservoir characteristics and brittleness evaluation of Wufeng Formation-Longmaxi Formation shale in Yichang area, Western Hubei Province[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 54-61(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract9974.shtml
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1439) PDF Downloads(764) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return