Citation: | Qiao Xiaoying, Jiang Meng, Ma Shaoyang. Analysis of interaction between lake water and groundwater in beach of Maowusu Lake Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 50-59. doi: 10.19509/j.cnki.dzkq.2021.0088 |
[1] |
余忠波. 地下水水文学原理[M]. 北京: 科学出版社, 2008.
Yu Z B. Principles of groundwater hydrology[M]. Beijing: Science Press, 2008(in Chinese).
|
[2] |
袁晓芳, 邓娅敏, 杜尧, 等. 江汉平原高砷地下水稳定碳同位素特征及其指示意义[J]. 地质科技通报, 2020, 39(5): 156-163. doi: 10.19509/j.cnki.dzkq.2021.0008
Yuan X F, Deng Y M, Du Y, et al. Characteristics of stable carbon isotopes and its implications on arsenic enrichment in shallow groundwater of the Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 156-163(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0008
|
[3] |
Cartwright K. Tracing shallow groundwater systems by soil temperatures[J]. Water Resources Research, 1974, 10(4): 847-855. doi: 10.1029/WR010i004p00847
|
[4] |
Stonestrom D A, Constantz J. Heat as a tool for studying the movement of groundwater near streams[J]. Circular, 2003, 1260: 1-96.
|
[5] |
Hatch C E, Fisher A T, Revenaugh J S, et al. Quantifying surface water-groundwater interactions using time series analysis of streambed thermal records: Method development[J]. Water Resources Research, 2006, 42(10): 1-14.
|
[6] |
Stallman R W. Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature[J]. Journal of Geophysical Research, 1965, 70(12): 2821-2827. doi: 10.1029/JZ070i012p02821
|
[7] |
Goto S, Yamano M, Kinoshita M. Thermal response of sediment with vertical fluid flow to periodic temperature variation at the surface[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B1): 1-11.
|
[8] |
Keery J, Binley A, Crook N, et al. Temporal and spatial variability of groundwater-surface water fluxes: Development and application of an analytical method using temperature time series[J]. Journal of Hydrology, 2007, 336(1/2): 1-16.
|
[9] |
Mccallum A M, Andersen M S, Rau G C, et al. A 1-D analytical method for estimating surface water-groundwater interactions and effective thermal diffusivity using temperature time series[J]. Water Resources Research, 2012, 48(11): 1-8.
|
[10] |
Luce C H, Tonina D, Gariglio F, et al. Solutions for the diurnally forced advection-diffusion equation to estimate bulk fluid velocity and diffusivity in streambeds from temperature time series[J]. Water Resoures, 2013, 49(1): 488-506. doi: 10.1029/2012WR012380
|
[11] |
张佳, 霍艾迪, 赛佳美, 等. 基于温度示踪的渭河西咸新区段潜流交换研究[J]. 人民黄河, 2017, 39(10): 66-69. doi: 10.3969/j.issn.1000-1379.2017.10.014
Zhang J, Huo A D, Sai J M, et al. Hyporheic study of Weihe River in Xixian new zone based on temperature tracer[J]. Yellow River, 2017, 39(10): 66-69(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1379.2017.10.014
|
[12] |
葛孟琰, 马瑞, 孙自永, 等. 高寒山区河水与地下水相互作用的温度示踪: 以黑河上游葫芦沟流域为例[J]. 地球科学, 2018, 43(11): 4246-4255. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201811039.htm
Ge M Y, Ma R, Sun Z Y, et al. Using heat tracer to estimate river water and groundwater interactions in alpine and cold regions: A case study of Hulugou watershed in upper reach of Heihe River[J]. Earth Science, 2018, 43(11): 4246-4255(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201811039.htm
|
[13] |
Kurylyk B L, Irvine D J, Bense V F. Theory, tools, and multidisciplinary applications for tracing groundwater fluxes from temperature profiles[J]. WIREs Water, 2019, 6(1): 1-23.
|
[14] |
廖婷, 邢新丽, 石明明, 等. 神农架大九湖PAHs多介质归趋模拟[J]. 地质科技通报, 2020, 39(5): 148-155. doi: 10.19509/j.cnki.dzkq.2020.0512
Liao T, Xing X L, Shi M M, et al. Multimedia fate modeling of PAHs in Dajiuhu, Shennongjia[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 148-155(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0512
|
[15] |
Gosselin J S, Rivard C, Martel R, et al. Application limits of the interpretation of near-surface temperature time series to assess groundwater recharge[J]. Journal of Hydrology, 2016, 538: 96-108. doi: 10.1016/j.jhydrol.2016.03.055
|
[16] |
Lautz L K. Impacts of nonideal field conditions on vertical water velocity estimates from streambed temperature time series[J]. Water Resources Research, 2010, 46(1): 1-14.
|
[17] |
Roshan H, Rau G C, Andersen M S, et al. Use of heat as tracer to quantify vertical streambed flow in a two dimensional flow field[J]. Water Resources Research, 2012, 48(10): 1-16.
|
[18] |
Kulongoski J T, Izbicki J A. Simulation of fluid, heat transport to estimate desert stream infiltration[J]. Ground Water, 2008, 46(3): 462-474. doi: 10.1111/j.1745-6584.2007.00403.x
|
[19] |
Barlow J, Coupe R H. Groundwater and surface-water exchange and resulting nitrate dynamics in the Bogue Phalia Basin in northwestern Mississippi[J]. Journal of Environmental Quality, 2012, 41(1): 155. doi: 10.2134/jeq2011.0087
|
[20] |
Russo T A, Fisher A T, Roche J W. Improving riparian wetland conditions based on infiltration and drainage behavior during and after controlled flooding[J]. Journal of Hydrology, 2012, 432/433: 98-111. doi: 10.1016/j.jhydrol.2012.02.022
|
[21] |
Ebrahim G Y, Hamonts K, Griensven A, et al. Effect of temporal resolution of water level and temperature inputs on numerical simulation of groundwater-surface water flux exchange in a heavily modified urban river[J]. Hydrological Processes, 2013, 27(11): 1634-1645. doi: 10.1002/hyp.9310
|
[22] |
Koch F W, Voytek E B, Day-Lewis F D, et al. 1D TempPro V2: New features for inferring groundwater/surface-water exchange[J]. Groundwater, 2016, 54(3): 434-439. doi: 10.1111/gwat.12369
|
[23] |
Su X R, Shu L C, Lu C P. Impact of a low-permeability lens on dune-induced hyporheic exchange[J]. Hydrological Sciences Journal, 2018, 63(5): 818-835. doi: 10.1080/02626667.2018.1453611
|
[24] |
Gordon R P, Lautz L K, Briggs M A, et al. Automated calculation of vertical pore-water flux from field temperature time series using the VFLUX method and computer program[J]. Journal of Hydrology, 2012, 420: 142-158.
|
[25] |
Healy R W, Ronan A D. Documentation of computer program VS2Dh for simulation of energy transport in variably saturated porous media; modification of the US Geological Survey's computer program VS2DT[J]. EP, 1996, 96: 4230.
|