Volume 39 Issue 6
Nov.  2020
Turn off MathJax
Article Contents
Zhao Huitao, Guo Yinghai, Du Xiaowei, Hu Yunbing, Kang Rui, Shangguan Jingwen. Micro-pore multifractal characteristics of Benxi Formation sandstone reservoir in Gaoqiao area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 175-184. doi: 10.19509/j.cnki.dzkq.2020.0614
Citation: Zhao Huitao, Guo Yinghai, Du Xiaowei, Hu Yunbing, Kang Rui, Shangguan Jingwen. Micro-pore multifractal characteristics of Benxi Formation sandstone reservoir in Gaoqiao area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 175-184. doi: 10.19509/j.cnki.dzkq.2020.0614

Micro-pore multifractal characteristics of Benxi Formation sandstone reservoir in Gaoqiao area, Ordos Basin

doi: 10.19509/j.cnki.dzkq.2020.0614
  • Received Date: 25 Nov 2019
  • Eleven sandstone samples from Benxi Formation of Upper Paleozoic in Gaoqiao area of Ordos Basin were selected.The lithological characteristics and pore structure characteristics of the reservoir were analyzed based on rock slices and scanning electron microscopy.The distribution data of nuclear magnetic resonance T2 of sandstone samples were studied by using multifractal theory.The pore multifractal characteristics of sandstone reservoir are discussed, and the relationship between multifractal parameters and pore structure parameters, mineral composition and physical properties of sandstone is analyzed.The results show that the sandstones of Benxi Formation are mostly quartz sandstones and lithic quartz sandstones, and the skeleton grains are mainly quartz (63%-85%, with an average of 71.45%)and lithic debris(3%-17.5%, with an average of 10.91%), without feldspar.The cements are mainly kaolinite(3%-10%, with an average of 6.3%) and carbonate cements(0-9%, with an average of 5.65%).The pore size distribution of sandstone reservoir shows obvious multifractal characteristics.The multifractal parameters, Dmin-Dmax, Dmin/Dmax and Δα is between 1.16-1.83, 2.73-6.92 and 1.37-4.33 respectively.Research shows that both α-f(α) multifractal singular spectrum and q-D(q) generalized multifractal parameters can be used to quantitatively characterize the heterogeneity of pore distribution of sandstone reservoirs.The multifractal parameters have weak positive correlation and negative correlation with quartz content and rock debris content respectively, and have obvious negative correlation with cements content.The multifractal parameters are closely related to the permeability of reservoir.With the permeability increasing, the multifractal parameters show the trend of increasing first and then decreasing.Therefore, it is not that the smaller the heterogeneity is, the better the reservoir is.The development of a large number of intercrystalline pores can reduce the heterogeneity of the reservoir, but also greatly restricts the permeability of the reservoir.Relatively large pores are developed and have not undergone strong compaction, cementation and other diagenetic transformation.Reservoirs with weak heterogeneity are favorable areas for oil and gas exploration.

     

  • loading
  • [1]
    Wu H, Zhang C, Ji Y, et.al.An improved method of characterizing the pore structure in tight oil reservoirs: Integrated NMR and constant-rate- controlled porosimetry data[J].Journal of Petroleum Science and Engineering, 2018, 166:778-796. http://www.sciencedirect.com/science/article/pii/S0920410518302511
    [2]
    赵丁丁, 孙卫, 杜堃, 等.特低-超低渗透砂岩储层微观水驱油特征及影响因素:以鄂尔多斯盆地马岭油田长8-1储层为例[J].地质科技情报, 2019, 38(3):157-164. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201903016.htm
    [3]
    刘晓鹏, 刘燕, 陈娟萍, 等.鄂尔多斯盆地盒8段致密砂岩气藏微观孔隙结构及渗流特征[J].天然气地球科学, 2016, 27(7):1225-1234. http://d.wanfangdata.com.cn/periodical/trqdqkx201607009
    [4]
    彭军, 韩浩东, 夏青松, 等.深埋藏致密砂岩储层微观孔隙结构的分形表征及成因机理:以塔里木盆地顺托果勒地区柯坪塔格组为例[J].石油学报, 2018, 39(7):775-791. http://www.cnki.com.cn/Article/CJFDTotal-SYXB201807005.htm
    [5]
    Liu M, Xie R, Li C, et al.Determining the segmentation point for calculating the fractal dimension from mercury injection capillary pressure curves in tight sandstone[J].Journal of Geophysics and Engineering, 2018, 15(4):1350-1362. http://www.researchgate.net/publication/323374426_Determining_the_segmentation_point_for_calculating_the_fractal_dimension_from_mercury_injection_capillary_pressure_curves_in_tight_sandstone
    [6]
    操应长, 葸克来, 刘可禹, 等.陆相湖盆致密砂岩油气储层储集性能表征与成储机制:以松辽盆地南部下白垩统泉头组四段为例[J].石油学报, 2018, 39(3):247-265. http://www.cnki.com.cn/Article/CJFDTotal-SYXB201803001.htm
    [7]
    宋磊, 宁正福, 孙一丹, 等.联合压汞法表征致密油储层孔隙结构[J].石油实验地质, 2017, 39(5):700-705. http://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201705017.htm
    [8]
    朱如凯, 吴松涛, 崔景伟, 等.油气储层中孔隙尺寸分级评价的讨论[J].地质科技情报, 2016, 35(3):133-144. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201603017.htm
    [9]
    盛军, 孙卫, 赵婷, 等.致密砂岩气藏微观孔隙结构参数定量评价:以苏里格气田东南区为例[J].西北大学学报:自然科学版, 2015, 45(6):913-924. http://www.cnki.com.cn/Article/CJFDTotal-XBDZ201506010.htm
    [10]
    王玉霞, 周立发, 焦尊生, 等.基于三参数非线性渗流的低渗透砂岩油藏CO2非混相驱相渗计算模型[J].西北大学学报:自然科学版, 2018, 48(1):107-114, 131. http://www.cnki.com.cn/Article/CJFDTotal-XBDZ201801017.htm
    [11]
    陶士振, 高晓辉, 李昌伟, 等.煤系致密砂岩气渗流机理实验模拟研究:以四川盆地上三叠统须家河组煤系致密砂岩气为例[J].天然气地球科学, 2016, 27(7):1143-1152. http://www.cnki.com.cn/Article/CJFDTotal-TDKX201607001.htm
    [12]
    郑江韬.低渗透岩石的应力敏感性与孔隙结构三维重构研究[D].北京: 中国矿业大学(北京), 2016.
    [13]
    聂昕.页岩气储层岩石数字岩心建模及导电性数值模拟研究[D].北京: 中国地质大学(北京), 2014.
    [14]
    苏娜.低渗气藏微观孔隙结构三维重构研究[D].成都: 西南石油大学, 2011.
    [15]
    冯小哲, 祝海华.鄂尔多斯盆地苏里格地区下石盒子组致密砂岩储层微观孔隙结构及分形特征[J].地质科技情报, 2019, 38(3):147-156. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201903015.htm
    [16]
    邓浩阳, 司马立强, 吴玟, 等.致密砂岩储层孔隙结构分形研究与渗透率计算:以川西坳陷蓬莱镇组、沙溪庙组储层为例[J].岩性油气藏, 2018, 30(6):76-82. http://d.wanfangdata.com.cn/periodical/yxyqc201806009
    [17]
    Gould D J, Vadakkan T J.Multifractal and lacunarity analysis of microvascular morphology and remodeling[J].Microcirculation, 2011, 18(2):136-151.
    [18]
    Zhang Z Y, Weller A.Fractal dimension of pore-space geometry of an Eocene sandstone formation[J].Geophysics, 2014, 79(6):377-387.
    [19]
    Bu H L, Ju Y W, Tang J Q, et al.Fractal characteristics of pores in non-marine shales from the Huainan Coalfield, eastern China[J].Journal of Natural Gas Science and Engineering, 2015, 24:166-177. http://www.sciencedirect.com/science/article/pii/s1875510015001213
    [20]
    王民, 焦晨雪, 李传明, 等.东营凹陷沙河街组页岩微观孔隙多重分形特征[J].油气地质与采收率, 2019, 26(1):72-79. http://www.zhangqiaokeyan.com/academic-journal-cn_petroleum-geology-recovery-efficiency_thesis/0201270874162.html
    [21]
    郭明磊, 肖佳, 左胜浩.水泥-石灰石粉胶凝材料孔结构多重分形特征以及与渗透性的关系[J].硅酸盐学报, 2019, 47(5):617-624. http://www.cnki.com.cn/Article/CJFDTotal-GXYB201905006.htm
    [22]
    管孝艳, 杨培岭, 李柳, 等.长期再生水灌溉后土壤孔隙分布的多重分形特征[J].排灌机械工程学报, 2018, 36(11):1163-1167. http://www.cnki.com.cn/Article/CJFDTotal-PGJX201811020.htm
    [23]
    贾承造, 郑民, 张永峰.中国非常规油气资源与勘探开发前景[J].石油勘探与开发, 2012, 39(2):129-136. http://www.cnki.com.cn/Article/CJFDTotal-SKYK201202002.htm
    [24]
    邹才能, 董大忠, 王社教, 等.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发, 2010, 37(6):641-653.
    [25]
    李文厚, 庞军刚, 曹红霞, 等.鄂尔多斯盆地晚三叠世延长期沉积体系及岩相古地理演化[J].西北大学学报:自然科学版, 2009, 39(3):501-506. http://d.wanfangdata.com.cn/periodical/xbdxxb200903020
    [26]
    杨华, 张文正.论鄂尔多斯盆地长_7段优质油源岩在低渗透油气成藏富集中的主导作用:地质地球化学特征[J].地球化学, 2005, 34(2):147-154. http://www.cnki.com.cn/Article/CJFDTotal-DQHX200502006.htm
    [27]
    Ge X, Fan Y, Zhu X, et al.Determination of nuclear magnetic resonance T2 cutoff value based on multifractal theory:An application in sandstone with complex pore structure[J].Geophysics, 2015, 80(1):11-21.
    [28]
    Gutierrez C G, Jose F S.Multifractal analysis of soil micro and macro porosity using digital images obtained with fluorescent dye[J].Geophysics Research Abstract, 2006, 8:60.
    [29]
    Chhabra A, Jensen R V.Direct determination of the α-f(α) singularity spectrum[J].Physical Review Letters, 1989, 62(11):1327-1330.
    [30]
    王金满, 张萌, 白中科, 等.黄土区露天煤矿排土场重构土壤颗粒组成的多重分形特征[J].农业工程学报, 2014, 30(4):230-238. http://www.cnki.com.cn/Article/CJFDTotal-NYGU201404028.htm
    [31]
    Miranda J G V, Montero E, Alves M C, et al.Multifractal characterization of saprolite particle-size distributions after topsoil removal[J].Geoderma., 2006, 134(3/4):373-385.
    [32]
    Martín M A, Rey J M, Taguas F J.An entropy-based parametrization of soil texture via fractal modelling of particle-size distribution[J].Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 2001, 457:937-947. doi: 10.1098/rspa.2000.0699
    [33]
    Lee C K.Multifractal characteristics in air pollutant concentration time series[J].Water Air Soil Pollution, 2002, 135(1/4):389-409. doi: 10.1023/A%3A1014768632318
    [34]
    马超, 秦颦, 周尚文, 等.含气页岩实验评价指标与测试方法综述[J].地质科技情报, 2019, 38(2):161-169. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201902019.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(996) PDF Downloads(3501) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return