Volume 39 Issue 4
Jul.  2020
Turn off MathJax
Article Contents
Zhang Xubing, Wang Xianmin, Wang Kai, Yue Qiaobing, Zhang Liang. Recognition of the Martian minerals based on the deep belief networks method: Application in the CRISM images[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 189-200. doi: 10.19509/j.cnki.dzkq.2020.0423
Citation: Zhang Xubing, Wang Xianmin, Wang Kai, Yue Qiaobing, Zhang Liang. Recognition of the Martian minerals based on the deep belief networks method: Application in the CRISM images[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 189-200. doi: 10.19509/j.cnki.dzkq.2020.0423

Recognition of the Martian minerals based on the deep belief networks method: Application in the CRISM images

doi: 10.19509/j.cnki.dzkq.2020.0423
  • Received Date: 01 Apr 2019
  • In order to decrease recognition inaccuracies of the different minerals with similar single absorption peak by means of the spectral characteristic parameter methods which are difficult to estimate the spectrum of the whole wavelength range, this paper applied the deep belief networks (DBN) method to detect the Martian minerals from the hyperspectral images of the compact reconnaissance imaging spectrometer for Mars (CRISM). According to the method, firstly, the unsupervised layer-by-layer greedy algorithm is adopted to train each restricted Boltzmann machine (RBM) for the sake of learning parameters and extracting the spectral features of the minerals with a single bottom-up pass. Then, it takes advantage of the back propagation (BP) algorithm to tune the parameters learned in the train step and automatically identify the Martian minerals with coupling a suitable classifier. In this paper, the ratios of the minerals spectral and the dust spectral are utilized to identify the mineral samples for sake of decreasing the dust effect. Finally the influences of the sample size, the number of the hidden layer nodes, and the network depth are investigated to established the optimal deep belief networks for the recognition of the Martian minerals. As illustrated by the case of the Mg/Fe smectites and the chlorides from the CRISM images, the experimental results indicate that the recognition accuracy of the DBN method is more than 85%. In conclusion, the DBN method has a better performance in detecting some pixels of the minerals that the spectral parameter algorithm cannot detect in the CRISM images, and the deep learning method could be utilized in the recognition of the Martian minerals automatically.

     

  • loading
  • [1]
    赵斌魁, 孙平贺, 张绍和, 等."好奇"号火星探测器火星表面取样钻探近况[J].地质科技情报, 2018, 37(6):286-293. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201806036
    [2]
    Joshua A, Bandfiled L.Global mineral distributions on Mars[J].Journal of Geophysical Research, 2002, 107(6):1-20. http://core.ac.uk/display/10490750
    [3]
    Christensen P R, Bandfield J L, Hamilton V E, et al.Mars global surveyor thermal emission spectrometer experiment:Investigation description and surface science results[J].Journal of Geophysical Research, 2001, 106(10):23823-23871. doi: 10.1029/2000JE001370/references
    [4]
    祝民强, 周万蓬, 胡全一, 等.火星快车OMEGA高光谱探测矿物组成的新进展[J].地球科学进展, 2010, 25(7):691-697. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz201007003
    [5]
    Poul F, Bilbring J P, Mustard J F, et al.Phyllosilicates on Mars and implications for early Martian climate[J].Nature, 2005, 438:623-627. doi: 10.1038/nature04274
    [6]
    Ehlmann B L, Mustard J F, Swayze G A, et al.Identification of hydrated silicate minerals on Mars using MRO-CRISM:Geologic context near Nili Fossae and implications for aqueous alteration[J].Journal of Geophysical Research, 2009, 114(3):1-33. doi: 10.1029/2009JE003339/abstract
    [7]
    El-Maarry M R, Pommerol A, Thomas N.Analysis of polygonal cracking patterns in chloride-bearing terrains on Mars:Indicators of ancient playa settings[J].Journal of Geophysical Research, 2013, 118(11):2263-2278. doi: 10.1002/2013JE004463/citedby
    [8]
    Vivian-Beck C E, Seelos F P, Murchie S L, et al.Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars[J].Journal of Geophysical Research Planets, 2014, 119(6):1403-1431. doi: 10.1002/2014JE004627
    [9]
    Bornstein B, Castano R, Gilmore M S, et al.Creation and testing of an artificial neural network based carbonate detector for Mars recovers[C]//Cook K.2005 IEEE Aerospace Conference.MT, USA: IEEE Computer Society, 2005: 378-384.
    [10]
    Bornstein B, Castano R, Gilmore M S, et al.Generation and performance of automated jarosite mineral detectors for visible/near-infrared spectrometers at Mars[J].Icarus, 2008, 195(1):169-183. doi: 10.1016/j.icarus.2007.11.025
    [11]
    Gilemore M S, Thompson D R, Anderson L J, et al.Superpixel segmentation for analysis of hyperspectral data sets, with application to compact reconnaissance imaging spectrometer for Mars data, Moon mineralogy mapper data[J].Journal of Geophysical Research Atmospheres, 2011, 116(7):4080-4093. https://www.researchgate.net/publication/251434186_Superpixel_segmentation_for_analysis_of_hyperspectral_data_sets_with_application_to_Compact_Reconnaissance_Imaging_Spectrometer_for_Mars_data_Moon_Mineralogy_Mapper_data_and_Ariadnes_Chaos_Mars
    [12]
    Carter J, Poulet F, Murchie S, et al.Automated processing of planetary hyperspectral datasets for the extraction of weak mineral signatures and applications to CRISM observations of hydrated silicates on Mars[J].Planetary and Space Science, 2013, 76(2):53-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=932774cb7ad4103a0de38b7aa793740d
    [13]
    苏余斌, 詹云军, 黄解军, 等.面向高光谱矿物填图的多特征结合降维方法研究[J].地质科技情报, 2015, 34(5):206-211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201505032
    [14]
    Melgani F, Bruzzone L.Classification of hyperspectral remote sensing images with support vector machines[J].IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8):1778-1790. doi: 10.1109/TGRS.2004.831865
    [15]
    Fauvel M, Benediktsson J A, Chanussot J, et al.spectral and spatial classification of hyperspectral data using SVM sand morphological profiles[J].IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11):3804-3814. doi: 10.1109/TGRS.2008.922034
    [16]
    Camps-Valls G, Bruzzone L.Kernel-based methods for hyperspectral image classification[J].IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(6):1351-1362. doi: 10.1109/TGRS.2005.846154
    [17]
    Samat A, Du P, Liu S, et al.Ensemble extreme learning machines for hyperspectral image classification[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(4):1060-1069. doi: 10.1109/JSTARS.2014.2301775
    [18]
    Hu Wei, Huang Yangyu, Wei Li, et al.Deep convolutional neural networks for hyperspectral image classification[J].Journal of Sensors, 2015, 2015(2):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0525ad32bdb5ec66dbfadaf3cb6189d9
    [19]
    Chen Yushi, Jiang Hanlu, Jia Xiuping, et al.Deep features extraction and classification of hyperspectral images based on convolutional neural networks[J].IEEE Transaction on Geosciences and Remote Sensing, 2016, 54(10):6232-6251. doi: 10.1109/TGRS.2016.2584107
    [20]
    Li T, Zhang J P, Zhang Y, et al.Classification of hyperspectral image based on deep belief networks[C]//Caqnazzo M.2014 IEEE International Conference on Image Processing (ICIP).Paris: IEEE Computer Society, 2015: 5132-5136.
    [21]
    Zhao Wenzhi, Du Shihong.Spectral-spatial feature extraction for hyperspectral image classification:A dimension reduction and deep learning approach[J].IEEE Transaction on Geosciences and Remote Sensing, 2016, 54(8):4544-4554. doi: 10.1109/TGRS.2016.2543748
    [22]
    Chen Yushi, Lin Zhouhan, Wang Gang, et al.Deep learning-based classification of hyperspectral data[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6):2094-2107. doi: 10.1109/JSTARS.2014.2329330
    [23]
    林杨挺.探索火星环境和生命[J].自然杂志, 2016, 38(1):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzz201601002
    [24]
    徐丽坤, 刘晓东, 向小翠.基于深度信念网络的遥感影像识别与分类[J].地质科技情报, 2017, 36(4):244-249. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201704032
    [25]
    李玮, 吴亮, 陈冠宇.基于遥感分类的深度信念网络模型研究[J].地质科技情报, 2018, 37(2):208-214. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201802028
    [26]
    Hinton G E, Osindero S.A fast learning algorithm for deep belief nets[J].Neural Computation, 2006, 18(7):1527-1554. doi: 10.1162/neco.2006.18.7.1527
    [27]
    Bengio Y.Learning deep architectures for AI[J].Foundations and Trends in Machine Learning, 2009, 2(1):1-127. http://jamia.oxfordjournals.org/lookup/external-ref?access_num=10.1561/2200000006&link_type=DOI
    [28]
    Hinton G E.Training product of experts by minimizing contrastive divergence[J].Neural Computation, 2002, 14(8):1771-1800. doi: 10.1162/089976602760128018
    [29]
    刘超, 唐锡彬, 邓冬梅等.基于支持向量机回归的岩体变形模量预测[J].地质科技情报, 2018, 37(5):275-280. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201805038
    [30]
    Murchie S, Arvidson R, Bedini P, et al.Compact reconnaissance imaging spectrometer for Mar (CRISM) on Mars reconnaissance orbiter (MRO)[J].Journal of Geophysical Research, 2007, 112(5):431-433. doi: 10.1029/2006JE002682/abstract
    [31]
    Gurunadham R, Shashi Kumar.Extraction of aqueous minerals on Mars surface using CRISM based targeted reduced data records[M].Hyderabad:ISPRS, 2014.
    [32]
    杨懿, 金双根, 薛岩松.利用CRISM数据探测火星表面含水矿物及其演化[J].深空探测学报, 2016, 3(2):187-194. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sktcxb201602015
    [33]
    McGuire P C, Bishop J L, Brown A J, et al.An improvement to the volcano-scan algorithm for atmospheric correction of CRISM and OMEGA spectral data[J].Planetary and Space Science, 2009, 57(7):809-815. doi: 10.1016/j.pss.2009.03.007
    [34]
    Hinton G E.Reducing the dimensionality of data with neural networks[J].Science, 2006, 313:504-507. doi: 10.1126/science.1127647
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(821) PDF Downloads(1802) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return