Citation: | Zhang Xubing, Wang Xianmin, Wang Kai, Yue Qiaobing, Zhang Liang. Recognition of the Martian minerals based on the deep belief networks method: Application in the CRISM images[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 189-200. doi: 10.19509/j.cnki.dzkq.2020.0423 |
[1] |
赵斌魁, 孙平贺, 张绍和, 等."好奇"号火星探测器火星表面取样钻探近况[J].地质科技情报, 2018, 37(6):286-293. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201806036
|
[2] |
Joshua A, Bandfiled L.Global mineral distributions on Mars[J].Journal of Geophysical Research, 2002, 107(6):1-20. http://core.ac.uk/display/10490750
|
[3] |
Christensen P R, Bandfield J L, Hamilton V E, et al.Mars global surveyor thermal emission spectrometer experiment:Investigation description and surface science results[J].Journal of Geophysical Research, 2001, 106(10):23823-23871. doi: 10.1029/2000JE001370/references
|
[4] |
祝民强, 周万蓬, 胡全一, 等.火星快车OMEGA高光谱探测矿物组成的新进展[J].地球科学进展, 2010, 25(7):691-697. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz201007003
|
[5] |
Poul F, Bilbring J P, Mustard J F, et al.Phyllosilicates on Mars and implications for early Martian climate[J].Nature, 2005, 438:623-627. doi: 10.1038/nature04274
|
[6] |
Ehlmann B L, Mustard J F, Swayze G A, et al.Identification of hydrated silicate minerals on Mars using MRO-CRISM:Geologic context near Nili Fossae and implications for aqueous alteration[J].Journal of Geophysical Research, 2009, 114(3):1-33. doi: 10.1029/2009JE003339/abstract
|
[7] |
El-Maarry M R, Pommerol A, Thomas N.Analysis of polygonal cracking patterns in chloride-bearing terrains on Mars:Indicators of ancient playa settings[J].Journal of Geophysical Research, 2013, 118(11):2263-2278. doi: 10.1002/2013JE004463/citedby
|
[8] |
Vivian-Beck C E, Seelos F P, Murchie S L, et al.Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars[J].Journal of Geophysical Research Planets, 2014, 119(6):1403-1431. doi: 10.1002/2014JE004627
|
[9] |
Bornstein B, Castano R, Gilmore M S, et al.Creation and testing of an artificial neural network based carbonate detector for Mars recovers[C]//Cook K.2005 IEEE Aerospace Conference.MT, USA: IEEE Computer Society, 2005: 378-384.
|
[10] |
Bornstein B, Castano R, Gilmore M S, et al.Generation and performance of automated jarosite mineral detectors for visible/near-infrared spectrometers at Mars[J].Icarus, 2008, 195(1):169-183. doi: 10.1016/j.icarus.2007.11.025
|
[11] |
Gilemore M S, Thompson D R, Anderson L J, et al.Superpixel segmentation for analysis of hyperspectral data sets, with application to compact reconnaissance imaging spectrometer for Mars data, Moon mineralogy mapper data[J].Journal of Geophysical Research Atmospheres, 2011, 116(7):4080-4093. https://www.researchgate.net/publication/251434186_Superpixel_segmentation_for_analysis_of_hyperspectral_data_sets_with_application_to_Compact_Reconnaissance_Imaging_Spectrometer_for_Mars_data_Moon_Mineralogy_Mapper_data_and_Ariadnes_Chaos_Mars
|
[12] |
Carter J, Poulet F, Murchie S, et al.Automated processing of planetary hyperspectral datasets for the extraction of weak mineral signatures and applications to CRISM observations of hydrated silicates on Mars[J].Planetary and Space Science, 2013, 76(2):53-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=932774cb7ad4103a0de38b7aa793740d
|
[13] |
苏余斌, 詹云军, 黄解军, 等.面向高光谱矿物填图的多特征结合降维方法研究[J].地质科技情报, 2015, 34(5):206-211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201505032
|
[14] |
Melgani F, Bruzzone L.Classification of hyperspectral remote sensing images with support vector machines[J].IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8):1778-1790. doi: 10.1109/TGRS.2004.831865
|
[15] |
Fauvel M, Benediktsson J A, Chanussot J, et al.spectral and spatial classification of hyperspectral data using SVM sand morphological profiles[J].IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11):3804-3814. doi: 10.1109/TGRS.2008.922034
|
[16] |
Camps-Valls G, Bruzzone L.Kernel-based methods for hyperspectral image classification[J].IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(6):1351-1362. doi: 10.1109/TGRS.2005.846154
|
[17] |
Samat A, Du P, Liu S, et al.Ensemble extreme learning machines for hyperspectral image classification[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(4):1060-1069. doi: 10.1109/JSTARS.2014.2301775
|
[18] |
Hu Wei, Huang Yangyu, Wei Li, et al.Deep convolutional neural networks for hyperspectral image classification[J].Journal of Sensors, 2015, 2015(2):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0525ad32bdb5ec66dbfadaf3cb6189d9
|
[19] |
Chen Yushi, Jiang Hanlu, Jia Xiuping, et al.Deep features extraction and classification of hyperspectral images based on convolutional neural networks[J].IEEE Transaction on Geosciences and Remote Sensing, 2016, 54(10):6232-6251. doi: 10.1109/TGRS.2016.2584107
|
[20] |
Li T, Zhang J P, Zhang Y, et al.Classification of hyperspectral image based on deep belief networks[C]//Caqnazzo M.2014 IEEE International Conference on Image Processing (ICIP).Paris: IEEE Computer Society, 2015: 5132-5136.
|
[21] |
Zhao Wenzhi, Du Shihong.Spectral-spatial feature extraction for hyperspectral image classification:A dimension reduction and deep learning approach[J].IEEE Transaction on Geosciences and Remote Sensing, 2016, 54(8):4544-4554. doi: 10.1109/TGRS.2016.2543748
|
[22] |
Chen Yushi, Lin Zhouhan, Wang Gang, et al.Deep learning-based classification of hyperspectral data[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6):2094-2107. doi: 10.1109/JSTARS.2014.2329330
|
[23] |
林杨挺.探索火星环境和生命[J].自然杂志, 2016, 38(1):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzz201601002
|
[24] |
徐丽坤, 刘晓东, 向小翠.基于深度信念网络的遥感影像识别与分类[J].地质科技情报, 2017, 36(4):244-249. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201704032
|
[25] |
李玮, 吴亮, 陈冠宇.基于遥感分类的深度信念网络模型研究[J].地质科技情报, 2018, 37(2):208-214. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201802028
|
[26] |
Hinton G E, Osindero S.A fast learning algorithm for deep belief nets[J].Neural Computation, 2006, 18(7):1527-1554. doi: 10.1162/neco.2006.18.7.1527
|
[27] |
Bengio Y.Learning deep architectures for AI[J].Foundations and Trends in Machine Learning, 2009, 2(1):1-127. http://jamia.oxfordjournals.org/lookup/external-ref?access_num=10.1561/2200000006&link_type=DOI
|
[28] |
Hinton G E.Training product of experts by minimizing contrastive divergence[J].Neural Computation, 2002, 14(8):1771-1800. doi: 10.1162/089976602760128018
|
[29] |
刘超, 唐锡彬, 邓冬梅等.基于支持向量机回归的岩体变形模量预测[J].地质科技情报, 2018, 37(5):275-280. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201805038
|
[30] |
Murchie S, Arvidson R, Bedini P, et al.Compact reconnaissance imaging spectrometer for Mar (CRISM) on Mars reconnaissance orbiter (MRO)[J].Journal of Geophysical Research, 2007, 112(5):431-433. doi: 10.1029/2006JE002682/abstract
|
[31] |
Gurunadham R, Shashi Kumar.Extraction of aqueous minerals on Mars surface using CRISM based targeted reduced data records[M].Hyderabad:ISPRS, 2014.
|
[32] |
杨懿, 金双根, 薛岩松.利用CRISM数据探测火星表面含水矿物及其演化[J].深空探测学报, 2016, 3(2):187-194. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sktcxb201602015
|
[33] |
McGuire P C, Bishop J L, Brown A J, et al.An improvement to the volcano-scan algorithm for atmospheric correction of CRISM and OMEGA spectral data[J].Planetary and Space Science, 2009, 57(7):809-815. doi: 10.1016/j.pss.2009.03.007
|
[34] |
Hinton G E.Reducing the dimensionality of data with neural networks[J].Science, 2006, 313:504-507. doi: 10.1126/science.1127647
|