Citation: | Jiang Nan, Li Xiaoqian, Zhou Aiguo, Huang Yuliu, Pan Guofang. Effect of pH value and Fe(Ⅲ) on the oxidative dissolution of stibnite[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 76-84. doi: 10.19509/j.cnki.dzkq.2020.0410 |
[1] |
刘飞, 邓道贵, 祝鹏飞, 等.水环境中不同形态锑的迁移转化及影响因素研究进展[J].安全与环境学报, 2014, 14(2):219-224. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aqyhjxb201402046
|
[2] |
朱静, 郭建阳, 王立英, 等.锑的环境地球化学研究进展概述[J].地球与环境, 2010, 38(1):109-116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdqhx201001019
|
[3] |
He M, Wang X, Wu F, et al.Antimony pollution in China[J].Science of the Total Environment, 2012, 421/422:41-50. doi: 10.1016/j.scitotenv.2011.06.009
|
[4] |
Fu Z, Wu F, Mo C, et al.Comparison of arsenic and antimony biogeochemical behavior in water, soil and tailings from Xikuangshan, China[J].Science of the Total Environment, 2016, 539:97-104. doi: 10.1016/j.scitotenv.2015.08.146
|
[5] |
王修, 王建平, 刘冲昊, 等.我国锑资源形势分析及可持续发展策略[J].中国矿业, 2014(5):9-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgky201405004
|
[6] |
张许州, 任景玲, 刘宗广, 等.浙闽沿岸海域总溶解态无机锑的分布及影响因素研究[J].环境科学, 2014, 35(2):547-554. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201402021
|
[7] |
Mitsunobu S, Takahashi Y, Terada Y, et al.Antimony(Ⅴ) incorporation into synthetic ferrihydrite, goethite, and natural iron oxyhydroxides[J].Environmental Science & Technology, 2010, 44(10):3712-3718. http://www.ncbi.nlm.nih.gov/pubmed/20426473
|
[8] |
Li J, Zheng B, He Y, et al.Antimony contamination, consequences and removal techniques:A review[J].Ecotoxicol Environ Saf., 2018, 156:125-134. doi: 10.1016/j.ecoenv.2018.03.024
|
[9] |
吴丰昌, 郑建, 潘响亮, 等.锑的环境生物地球化学循环与效应研究展望[J].地球科学进展, 2008, 23(4):350-356. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200804004
|
[10] |
Multani R S, Feldmann T, Demopoulos G P.Antimony in the metallurgical industry:A review of its chemistry and environmental stabilization options[J].Hydrometallurgy, 2016, 164:141-153. doi: 10.1016/j.hydromet.2016.06.014
|
[11] |
Rakshit S, Sarkar D, Punamiya P, et al.Antimony sorption at gibbsite-water interface[J].Chemosphere, 2011, 84(4):480-483. doi: 10.1016/j.chemosphere.2011.03.028
|
[12] |
杨森, 谢先军, 肖紫怡, 等.氨基三乙酸对污染土壤中镉活化迁移的影响[J].地质科技情报, 2019, 38(2):243-248. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201902028
|
[13] |
李立刚, 周建伟, 李伟洁, 等.某特大型锑矿区废石中锑的释放规律[J].地质科技情报, 2018, 37(5):215-221. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201805029
|
[14] |
方传棣, 成金华, 赵鹏大, 等.长江经济带矿区土壤重金属污染特征与评价[J].地质科技情报, 2019, 38(5):230-239. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201905024
|
[15] |
武亚遵, 潘春芳, 林云, 等.典型华北型煤矿区主要充水含水层水文地球化学特征及控制因素[J].地质科技情报, 2018, 37(5):191-199. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201805026
|
[16] |
He M, Wang N, Long X, et al.Antimony speciation in the environment:Recent advances in understanding the biogeochemical processes and ecological effects[J].Journal of Environmental Sciences, 2019, 75:14-39. doi: 10.1016/j.jes.2018.05.023
|
[17] |
Wen B, Zhou A, Zhou J, et al.Coupled S and Sr isotope evidences for elevated arsenic concentrations in groundwater from the world's largest antimony mine, central China[J].Journal of Hydrology, 2017, 557:211-221. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=efa89af6bcfef71bc266b39c382b15fd
|
[18] |
莫昌琍, 吴丰昌, 符志友, 等.湖南锡矿山锑矿区农用土壤锑、砷及汞的污染状况初探[J].矿物学报, 2013, 33(3):344-350. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb201303011
|
[19] |
He M, Wang N, Long X, et al.Antimony speciation in the environment:Recent advances in understanding the biogeochemical processes and ecological effects[J].Journal of environmental sciences, 2018, 75:14-39.
|
[20] |
Zhou J, Nyirenda M T, Xie L, et al.Mine waste acidic potential and distribution of antimony and arsenic in waters of the Xikuangshan Mine, China[J].Applied Geochemistry, 2016, 77:52-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbe4216246db3301647444f03ece11a2
|
[21] |
Guo W, Fu Z, Wang H, et al.Environmental geochemical and spatial/temporal behavior of total and speciation of antimony in typical contaminated aquatic environment from Xikuangshan, China[J].Microchemical Journal, 2018, 137:181-189. doi: 10.1016/j.microc.2017.10.010
|
[22] |
Wilson S C, Lockwood P V, Ashley P M, et al.The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic:A critical review[J].Environmental Pollution, 2010, 158(5):1169-1181. doi: 10.1016/j.envpol.2009.10.045
|
[23] |
王华伟, 李晓月, 李卫华, 等.pH和络合剂对五价锑在水钠锰矿和水铁矿表面吸附行为的影响[J].环境科学, 2017, 38(1):180-187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201701021
|
[24] |
Gleisner M, Herbert R B, Kockum P C F.Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen[J].Chemical Geology, 2006, 225(1/2):16-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4287a7433d6d1aaad951e1cdfab3de3b
|
[25] |
Biver M, Shotyk W.Stibnite(Sb2S3) oxidative dissolution kinetics from pH 1 to 11[J].Geochimica et Cosmochimica Acta, 2012, 79:127-139. doi: 10.1016/j.gca.2011.11.033
|
[26] |
Hu X, He M, Kong L.Photopromoted oxidative dissolution of stibnite[J].Applied Geochemistry, 2015, 61:53-61. doi: 10.1016/j.apgeochem.2015.05.014
|
[27] |
Herath I, Vithanage M, Bundschuh J.Antimony as a global dilemma:Geochemistry, mobility, fate and transport[J].Environmental Pollution, 2017, 223:545-559. doi: 10.1016/j.envpol.2017.01.057
|
[28] |
Morse J W, Millero F J, Cornwell J C, et al.The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters[J].Earth-Science Reviews, 1987, 24(1):1-42. doi: 10.1016/0012-8252(87)90046-8
|
[29] |
Leuz A K, Johnson C A.Oxidation of Sb(Ⅲ) to Sb(Ⅴ) by O2 and H2O2 in aqueous solutions[J].Geochimica et Cosmochimica Acta, 2005, 69(5):1165-1172. doi: 10.1016/j.gca.2004.08.019
|
[30] |
Borilova S, Mandl M, Zeman J, et al.Can sulfate be the first dominant aqueous sulfur species formed in the oxidation of pyrite by Acidithiobacillus ferrooxidans[J].Frontiers in Microbiology, 2018, 9:3134. doi: 10.3389/fmicb.2018.03134
|
[31] |
Raschman P, Emília S.Kinetics of leaching of stibnite by mixed Na2S and NaOH solutions[J].Hydrometallurgy, 2012, 113:60-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d20ca2c235535f099c25485aa9d4729e
|
[32] |
Gök Ö.Catalytic production of antimonate through alkaline leaching of stibnite concentrate[J].Hydrometallurgy, 2014, 149:23-30. doi: 10.1016/j.hydromet.2014.06.007
|
[33] |
Kamyshny A, Borkenstein C G, Ferdelman T G.Protocol forquantitative detection of elemental sulfur and polysulfide zero-valent sulfur distribution in natural aquatic samples[J].Geostandards and Geoanalytical Research, 2009, 33(3):415-435. doi: 10.1111/j.1751-908X.2009.00907.x
|
[34] |
温冰.湖南锡矿山水环境中锑来源及迁移转化的多元同位素解析[D].武汉: 中国地质大学(武汉), 2017.
|