留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湖北省秭归县降雨型滑坡连续概率阈值研究

李远耀 汪哲涵 居乐 李明 张鹏

李远耀,汪哲涵,居乐,等. 湖北省秭归县降雨型滑坡连续概率阈值研究[J]. 地质科技通报,2025,44(6):134-146 doi: 10.19509/j.cnki.dzkq.tb20250352
引用本文: 李远耀,汪哲涵,居乐,等. 湖北省秭归县降雨型滑坡连续概率阈值研究[J]. 地质科技通报,2025,44(6):134-146 doi: 10.19509/j.cnki.dzkq.tb20250352
LI Yuanyao,WANG Zhehan,JU Le,et al. Continuous probability threshold for rainfall-type landslides in Zigui County, Hubei Province[J]. Bulletin of Geological Science and Technology,2025,44(6):134-146 doi: 10.19509/j.cnki.dzkq.tb20250352
Citation: LI Yuanyao,WANG Zhehan,JU Le,et al. Continuous probability threshold for rainfall-type landslides in Zigui County, Hubei Province[J]. Bulletin of Geological Science and Technology,2025,44(6):134-146 doi: 10.19509/j.cnki.dzkq.tb20250352

湖北省秭归县降雨型滑坡连续概率阈值研究

doi: 10.19509/j.cnki.dzkq.tb20250352
基金项目: 水利部三峡后续工作规划项目地质灾害防治专项(0001212012AC50021)
详细信息
    通讯作者:

    E-mail:yuanyaoli2007@126.com

  • 中图分类号: P642.22

Continuous probability threshold for rainfall-type landslides in Zigui County, Hubei Province

More Information
  • 摘要:

    确定降雨阈值是开展滑坡危险性评价和气象风险预警的重要基础。针对临界降雨阈值空间分辨率低,区分降雨过程精度较差的问题,以湖北省秭归县为例,根据472处滑坡和58个雨量站数据,构建了有效降雨量−持续时间(E-D)临界降雨阈值;运用逻辑回归方法,以不同临界降雨阈值对应的有效降雨量(E)和持续时间(D)为自变量,时间概率(P)为因变量,拟合了区内降雨型滑坡的连续概率阈值;最后,通过历史滑坡事件和危险性评价结果,从时空2方面对阈值模型精度进行了分析和验证。结果表明:①区内滑坡以中小型浅层堆积层滑坡为主,降雨与滑坡事件存在显著正相关性,86.63%的滑坡发生在雨季;②连续概率阈值非线性拟合方程为$ 1/P= 1+ $$ {{\mathrm{e}}}^{2.0792+0.24156\times D-0.04072\times E} $,拟合度达0.9497;③基于验证集滑坡样本,滑坡发生概率为60%时,连续概率阈值模型预测精度提高17.4%,危险性评价中的4处已知滑坡危险等级均有提高。连续概率阈值对研究区滑坡灾害的预警精度和空间辨识度更优,可为地方政府开展滑坡风险预警提供科学理论参考。

     

  • 图 1  研究区地理位置与滑坡分布

    Figure 1.  Geographical location and landslide distribution in the study area

    图 2  滑坡与降雨量月际分布图

    Figure 2.  Monthly distribution map of landslide and rainfall

    图 3  2024年7月初滑坡灾害与累计降雨量空间分布图

    Figure 3.  Landslide hazard and spatial distribution of cumulative rainfall in early July 2024

    图 4  数据准备流程图

    Figure 4.  Data preparation flowchart

    图 5  降雨阈值下限散点拟合图

    Figure 5.  Scatter plot of lower rainfall threshold limit

    图 6  剔除前后滑坡样本点空间分布图

    Figure 6.  Spatial distribution of landslide sample points before and after exclusion

    图 7  降雨事件划分示意图

    Figure 7.  Schematic diagram of rainfall event classification

    图 8  滑坡发生前每日不同降雨等级占比图

    Figure 8.  Map of percentage of different rainfall classes for each day before the landslide

    图 9  临界E-D阈值曲线

    E20%E40%E60%E80%分别为滑坡发生时间概率为20%,40%,60%,80%的有效降雨量值,下同

    Figure 9.  Critical E-D threshold curve

    图 10  连续概率阈值曲面

    Figure 10.  Continuous probability threshold surface

    图 11  基于临界降雨阈值的滑坡危险性验证结果

    Figure 11.  Validation results of landslide hazard based on critical rainfall threshold

    图 12  各事件当天滑坡发生时间概率(P)分布图

    Figure 12.  Probability distribution of occurrence time of landslides on the day of each event

    图 13  基于滑坡连续概率阈值的危险性分级图

    Figure 13.  Hazard classification diagram based on landslide continuum probability threshold

    表  1  滑坡类型、规模、厚度及其数量占比

    Table  1.   Type, scale, thickness of landslides and their quantity ratios

    分类依据 数量/处 占比/%
    类型 堆积层滑坡 806 94.27
    岩质滑坡 42 4.91
    岩土混合滑坡 7 0.82
    规模/
    104m3
    <10(小型) 265 30.99
    [10, 100)(中型) 416 48.66
    [100, 1000)(大型) 150 17.54
    [1000, 10000)(特大型) 23 2.69
    >10000(巨型) 1 0.12
    厚度/
    m
    <10(浅层) 567 66.31
    [10, 25)(中层) 236 27.60
    [25, 50)(深层) 49 5.73
    >50(超深层) 3 0.36
    下载: 导出CSV

    表  2  样本集和验证集滑坡类型、规模、厚度、坡度及其数量占比

    Table  2.   Type, scale, thickness, slope of landslides of sample set and validation set and their quantity ratios

    分类依据 数量/处 占比/%
    样本集 验证集 样本集 验证集
    类型堆积层滑坡2935897.6792.06
    岩质滑坡632.004.76
    岩土混合滑坡120.333.18
    规模/
    104m3
    <10(小型)1211840.3338.57
    [10, 100)(中型)1403146.6748.21
    ≥100(大型及以上)391413.0013.22
    厚度/
    m
    <10(浅层)2283776.0071.73
    [10, 25)(中层)612020.3322.75
    ≥25(深层及以上)1163.675.52
    坡度/(°)<251032334.3336.51
    [25, 35)1383146.0049.21
    ≥3559919.6714.28
    下载: 导出CSV

    表  3  研究区典型滑坡变形破坏前的降雨特征

    Table  3.   Rainfall characteristics before typical landslides deformation and damage in the study area

    滑坡名称 发生时间 变形前降雨特征
    别家坡滑坡 1979-07-20 7月11日-当日一次暴雨
    累计降雨量达93.7 mm
    胡家院子滑坡 1983-07-02 6月26日-当日累计降雨量133.8 mm
    谭家岭滑坡 1991-06-30 发生当日降雨量137.5 mm
    后头坪滑坡 1996-07-04 滑坡发生当日及前2 d
    累计降雨量200.2 mm
    百日场(谭大坝)
    滑坡
    1996-07-07 7月2日-7月4日累计降雨量200.2 mm
    桐子沟滑坡 1998-07-01 6月29日降雨量189.6 mm
    水田坝乡龙口村1组
    云盘居民点
    2014-09-02 发生当日及前4 d累计降雨量237 mm
    泄滩乡白家河
    村2组池塘坪
    2016-07-07 6月24日-当日一次暴雨
    累计降雨量达159 mm
    茅坪镇陈家冲
    村3组向家坝
    2016-07-10 发生当日及前2 d累计降雨量153.3 mm
    磨坪乡天井坪
    村2组水井湾
    2017-10-06 发生当日及前9 d累计降雨量247.5 mm
    院墙坡滑坡 2020-06-29 发生当日及前8 d累计降雨量144.4 mm
    归州镇向家店村5组
    小岩头变形体
    2020-07-27 发生当日及前9 d累计降雨量149.9 mm
    柏树嘴滑坡 2024-07-10 7月3日-7月4日累计降雨量165 mm,
    7月9日降雨量135 mm
    湾水田滑坡 2024-07-17 7月15日降雨量242.8 mm,
    7月9日降雨量159 mm
    下载: 导出CSV

    表  4  秭归县不同天数降雨因子与滑坡因子相关性分析

    Table  4.   Correlation analysis between rainfall factors of different days and landslide factors at Zigui County

    降雨因子 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
    相关系数 0.593** 0.601** 0.546** 0.495** 0.463** 0.449** 0.435** 0.420** 0.418** 0.392**
    偏相关性系数 0.601** 0.614** 0.542** 0.489** 0.459** 0.452** 0.437** 0.419** 0.417** 0.387**
      注:P1. 以滑坡灾害事件当日00:00至24:00期间的雨量作为滑坡灾害的当日降雨量;P2. 以当日与前1 d降雨量之和作为该滑坡灾害事件的2 d累计降雨量;P3~P10以此类推;**. 在0.01显著性水平下,显著相关;下同
    下载: 导出CSV

    表  5  滑坡发生前每日不同降雨等级占比

    Table  5.   Percentage of different rainfall classes for each day before the landslide

    时间 降雨等级占比/%
    无降雨 小雨 中雨 大雨 暴雨 大暴雨
    当日 5.19 15.41 16.09 17.96 19.86 25.48
    前1 d 7.90 34.66 8.80 18.48 19.26 10.90
    前2 d 23.02 40.41 14.00 10.38 6.77 5.42
    前3 d 28.22 40.18 22.80 6.32 2.48 0
    前4 d 26.64 50.56 10.16 11.96 0.68 0
    前5 d 38.60 41.53 7.00 8.45 4.42 0
    前6 d 38.83 30.47 8.13 18.51 4.06 0
    前7 d 31.18 26.95 22.61 14.97 4.06 0.23
    前8 d 49.89 28.22 17.38 3.61 0.68 0.23
    前9 d 59.82 23.02 11.29 4.74 1.13 0
    前10 d 41.96 31.38 11.51 6.44 1.58 1.13
      注:无降雨、小雨、中雨、大雨、暴雨、大暴雨为根据累计降雨量划分的降雨等级,其累计降雨量分别为0,(0,10),[10,25),[25,50),[50,100),≥100 mm,下同
    下载: 导出CSV

    表  6  不同衰减系数下前7 d有效降雨量与滑坡间的相关性

    Table  6.   Correlation between effective rainfall in the first 7 days and landslides with different attenuation coefficients

    衰减系数α 1 0.9 0.8 0.7 0.6 0.5
    相关性系数 0.718** 0.726** 0.745** 0.684** 0.636** 0.589**
    偏相关性系数 0.717** 0.724** 0.747** 0.681** 0.633** 0.584**
    下载: 导出CSV

    表  7  滑坡E-D阈值曲线方程

    Table  7.   Equations for landslide E-D threshold curves

    预警等级 P/% 宏观阈值曲线 8 d降雨量/mm
    有效 实际
    蓝色预警 20 E20%=29D0.381 63.91 110.24
    黄色预警 40 E40%=37.7D0.381 83.08 129.53
    橙色预警 60 E60%=47.2D0.381 104.02 179.46
    红色预警 80 E80%=73D0.381 160.88 276.55
     注:E. 有效降雨量;D. 降雨持续时间;P. 滑坡发生时间概率;下同
    下载: 导出CSV

    表  8  不同时间概率下的前期有效降雨量及降雨持续天数

    Table  8.   Effective rainfall and rainfall duration days in the previous period with different temporal probabilities

    P/% E/mm
    D=1 d D=2 d D=3 d D=4 d D=5 d D=6 d D=7 d D=8 d D=9 d D=10 d
    0 9.5 12.4 14.4 16.1 17.5 18.8 19.9 20.9 21.9 22.8
    5 17.8 23.2 27.0 30.1 32.8 35.2 37.3 39.2 41.0 42.7
    10 21.0 27.3 31.9 35.6 38.7 41.5 44.0 46.3 48.4 50.4
    15 24.7 32.1 37.5 41.8 45.5 48.8 51.7 54.4 56.9 59.3
    20 29.0 37.7 44.0 49.1 53.5 57.3 60.7 63.9 66.8 69.6
    30 34.2 44.5 51.9 57.9 63.0 67.6 71.6 75.4 78.8 82.0
    40 37.7 48.4 56.5 63.0 68.6 73.5 77.9 82.0 85.7 89.2
    50 42.7 55.6 64.8 72.3 78.7 84.4 89.4 94.1 98.4 102.4
    60 47.2 61.4 71.7 79.9 87.0 93.2 98.9 104.0 108.8 113.2
    70 64.0 83.3 97.2 108.4 118.0 126.4 134.1 141.0 147.5 153.5
    80 73.0 95.0 110.8 123.6 134.6 144.2 152.9 160.9 168.2 175.1
    90 90.5 117.8 137.4 153.3 166.8 178.8 189.6 199.4 208.6 217.1
    100 108.7 141.5 165.0 184.1 200.4 214.7 227.7 239.6 250.5 260.8
    下载: 导出CSV

    表  9  2种模型验证集滑坡点分布情况

    Table  9.   Distribution of landslide sites in the validation set of the two models

    滑坡发生时间概率P/% <20 [20,40) [40,60) [60,80) ≥80
    临界降雨阈值模型 滑坡数量/个 6 8 14 23 12
    滑坡占比/% 9.5 12.7 22.2 36.5 19.1
    连续概率阈值模型 滑坡数量/个 1 5 11 23 23
    滑坡占比/% 1.6 7.9 17.5 36.5 36.5
    下载: 导出CSV

    表  10  典型降雨型滑坡的降雨数据和基于临界降雨阈值的发生时间概率

    Table  10.   Rainfall data and probability of occurrence time for typical rainfall-induced landslides based on critical rainfall threshold

    发生时间 滑坡 坡度/(°) 规模 厚度/m R0/mm R1/mm R2/mm R3/mm R4/mm R5/mm R6/mm R7/mm E/mm D/d P/% 危险性等级
    2014-08-05 沙湾子滑坡 25 中型 13 72.7 35.2 23.4 10.3 6.4 0 0 0 123.73 5 80 极高
    2016-07-10 向家院子滑坡 40 大型 15 38.3 39.7 49.4 21.2 16.6 0 0 0 119.33 5 60
    2016-07-19 店子坪滑坡 37 中型 5 69.6 44.5 7.6 6.7 30.1 5.2 2.1 0 128.08 6 60
    2017-07-20 归州老城滑坡 25 大型 15 40.9 24.4 37.3 0.1 0 0 0.1 66.2 98.25 3 60
    2020-07-03 王大洲屋前滑坡 32 小型 7 63.1 18.2 15.9 13.8 39.9 0 0 0 111.24 5 60
    2024-07-09 张家红屋场滑坡 35 中型 5 152.1 0 0 2.9 0.5 154.6 34.6 0.4 213.64 1 80 极高
      注:R0. 当日降雨量;R1. 前1 d降雨量;R2. 前2 d累计降雨量;R3~R7以此类推
    下载: 导出CSV

    表  11  典型降雨型滑坡基于连续概率阈值的发生时间概率

    Table  11.   Probability of occurrence time for typical rainfall-induced landslides based on continuous probability threshold

    发生时间 滑坡 E/mm D/d P/% 易发性值 连续概率
    危险性值
    危险性
    等级
    2014-08-05 沙湾子滑坡 123.73 5 96.7 0.923 0.893 极高
    2016-07-10 向家院子滑坡 119.33 5 93.4 0.899 0.840 极高
    2016-07-19 店子坪滑坡 128.08 6 95.1 0.863 0.821 极高
    2017-07-20 归州老城滑坡 98.25 3 89.8 1 0.898 极高
    2020-07-03 王大洲屋前滑坡 111.24 5 91.3 0.972 0.887 极高
    2024-07-09 张家红屋场滑坡 213.64 1 99.9 0.983 0.982 极高
    下载: 导出CSV
  • [1] 李媛, 孟晖, 董颖, 等. 中国地质灾害类型及其特征: 基于全国县市地质灾害调查成果分析[J]. 中国地质灾害与防治学报, 2004, 15(2): 29-34.

    LI Y, MENG H, DONG Y, et al. Main types and characterisitics of geo-hazard in China: Based on the results of geo-hazard survey in 290 counties[J]. The Chinese Journal of Geological Hazard and Control, 2004, 15(2): 29-34. (in Chinese with English abstract
    [2] IVERSON R M. Landslide triggering by rain infiltration[J]. Water Resources Research, 2000, 36(7): 1897-1910. doi: 10.1029/2000WR900090
    [3] COLLINS B D, ZNIDARCIC D. Stability analyses of rainfall induced landslides[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(4): 362-372. doi: 10.1061/(ASCE)1090-0241(2004)130:4(362)
    [4] SALCIARINI D, GODT J W, SAVAGE W Z, et al. Modeling landslide recurrence in Seattle, Washington, USA[J]. Engineering Geology, 2008, 102(3/4): 227-237.
    [5] 刘帅, 朱杰勇, 杨得虎, 等. 不同降雨工况条件下的崩滑地质灾害危险性评价[J]. 地质科技通报, 2024, 43(2): 253-267.

    LIU S, ZHU J Y, YANG D H, et al. Geological hazard risk assessment of collapse and landslide under different rainfall conditions[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 253-267. (in Chinese with English abstract
    [6] NG C W W, SHI Q. A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage[J]. Computers and Geotechnics, 1998, 22(1): 1-28. doi: 10.1016/S0266-352X(97)00036-0
    [7] 胡涛, 樊鑫, 李荻, 等. 贵州省思南县降雨型滑坡危险性预警研究[J]. 安全与环境工程, 2020, 27(3): 74-81.

    HU T, FAN X, LI D, et al. Rainfall-induced landslide hazard warning study in Sinan County of Guizhou Province[J]. Safety and Environmental Engineering, 2020, 27(3): 74-81. (in Chinese with English abstract
    [8] 魏瑞增, 单云锋, 秦佳松, 等. 广东省韶关市“4·20”极端降雨诱发滑坡发育特征及其主控因子分析[J/OL]. 地质科技通报: 1-21[2025-10-27]. https://doi.org/10.19509/j.cnki.dzkq.tb20250066

    WEI R Z, SHAN Y F, QIN J S, et al. Developmental characteristics and controlling factors of landslides triggered by extreme rainfall on April 20, 2024, in Shaoguan City, Guangdong Province[J/OL]. Bulletin of Geological Science and Technology: 1-21[2025-10-27]. https://doi.org/10.19509/j.cnki.dzkq.tb20250066. (in Chinese with English abstract
    [9] GLADE T, CROZIER M, SMITH P. Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “antecedent daily rainfall model”[J]. Pure and Applied Geophysics, 2000, 157(6): 1059-1079.
    [10] CHLEBORAD A F. Preliminary evaluation of a precipitation threshold for anticipating the occurrence of landslides in the Seattle, Washington area[J]. Center for Integrated Data Analytics Wisconsin Science Center, 2003: 463.
    [11] TOFANI V, BICOCCHI G, ROSSI G, et al. Soil characterization for shallow landslides modeling: A case study in the Northern Apennines (Central Italy)[J]. Landslides, 2017, 14(2): 755-770. doi: 10.1007/s10346-017-0809-8
    [12] MONTGOMERY D R, DIETRICH W E. A physically based model for the topographic control on shallow landsliding[J]. Water Resources Research, 1994, 30(4): 1153-1171. doi: 10.1029/93WR02979
    [13] MARIN R J. Physically based and distributed rainfall intensity and duration thresholds for shallow landslides[J]. Landslides, 2020, 17(12): 2907-2917. doi: 10.1007/s10346-020-01481-9
    [14] PACK R T, TARBOTON D G, GOODWIN C N. The SINMAP approach to terrain stability mapping[J]. Geography, 1998: 17978986.
    [15] SEGONI S, PICIULLO L, GARIANO S L. A review of the recent literature on rainfall thresholds for landslide occurrence[J]. Landslides, 2018, 15(8): 1483-1501. doi: 10.1007/s10346-018-0966-4
    [16] HONG Y, HIURA H, SHINO K, et al. The influence of intense rainfall on the activity of large-scale crystalline schist landslides in Shikoku Island, Japan[J]. Landslides, 2005, 2(2): 97-105. doi: 10.1007/s10346-004-0043-z
    [17] MILLER S, BREWER T, HARRIS N. Rainfall thresholding and susceptibility assessment of rainfall-induced landslides: Application to landslide management in St Thomas, Jamaica[J]. Bulletin of Engineering Geology and the Environment, 2009, 68(4): 539-550. doi: 10.1007/s10064-009-0232-z
    [18] 龚泉冰, 殷坤龙, 肖常贵, 等. 基于I-D阈值的滑坡气象预警双指标模型[J]. 地质科技通报, 2024, 43(1): 262-274.

    GONG Q B, YIN K L, XIAO C G, et al. Double-index model of landslide meteorological warning based on the I-D threshold[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 262-274. (in Chinese with English abstract
    [19] ROSSI M, LUCIANI S, VALIGI D, et al. Statistical approaches for the definition of landslide rainfall thresholds and their uncertainty using rain gauge and satellite data[J]. Geomorphology, 2017, 285: 16-27.
    [20] 张维东. 基于易发性和临界降雨阈值模型的地质灾害危险性预警模型研究: 以陕南秦巴山区为例[D]. 西安: 长安大学, 2022.

    ZHANG W D. Study on geological disaster risk warning model based on susceptibil and critical rainfall threshold mode[D]. Xi’an: Chang’an University, 2022. (in Chinese with English abstract
    [21] CAINE N. The rainfall intensity: Duration control of shallow landslides and debris flows[J]. Geografiska Annaler Series A, Physical Geography, 1980, 62(1/2): 23-27. doi: 10.2307/520449
    [22] GUZZETTI F, PERUCCACCI S, ROSSI M, et al. Rainfall thresholds for the initiation of landslides in central and southern Europe[J]. Meteorology and Atmospheric Physics, 2007, 98(3): 239-267.
    [23] 周剑, 汤明高, 许强, 等. 重庆市滑坡降雨阈值预警模型[J]. 山地学报, 2022, 40(6): 847-858.

    ZHOU J, TANG M G, XU Q, et al. Early warning model of rainfall-induced landslide in Chongqing of China based on rainfall threshold[J]. Mountain Research, 2022, 40(6): 847-858. (in Chinese with English abstract
    [24] 杨攀. 基于力学模型的非饱和土边坡滑坡预警降雨阈值研究[D]. 北京: 清华大学, 2014.

    YANG P. Research on rainfall thresholds for forecasting unsaturated soil slopes based on mechanical model[D]. Beijing: Tsinghua University, 2014. (in Chinese with English abstract
    [25] 严亮轩, 张义顺, 龚泉冰, 等. 降雨诱发斜坡失稳风险的气象预警[J]. 浙江大学学报(工学版), 2024, 58(6): 1174-1184.

    YAN L X, ZHANG Y S, GONG Q B, et al. Meteorological warning for rainfall-induced slope instability risk[J]. Journal of Zhejiang University (Engineering Science), 2024, 58(6): 1174-1184. (in Chinese with English abstract
    [26] 黄发明, 陈佳武, 范宣梅, 等. 降雨型滑坡时间概率的逻辑回归拟合及连续概率滑坡危险性建模[J]. 地球科学, 2022, 47(12): 4609-4628.

    HUANG F M, CHEN J W, FAN X M, et al. Logistic regression fitting of rainfall-induced landslide occurrence probability and continuous landslide hazard prediction modelling[J]. Earth Science, 2022, 47(12): 4609-4628. (in Chinese with English abstract
    [27] 张馨艺. 基于CPCNN网络的宣汉县降雨型滑坡连续概率预警研究[D]. 北京: 中国地质大学(北京), 2023.

    ZHANG X Y. Study on continuous probability early warning of rainfall landslide in Xuanhan County based on CPCNN network[D]. Beijing: China University of Geosciences (Beijing), 2023. (in Chinese with English abstract
    [28] 林巍, 李远耀, 徐勇, 等. 湖南慈利县滑坡灾害的临界降雨量阈值研究[J]. 长江科学院院报, 2020, 37(2): 48-54.

    LIN W, LI Y Y, XU Y, et al. Rainfall thresholds of rainfall-triggered landslides in Cili County, Hunan Province[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(2): 48-54. (in Chinese with English abstract
    [29] ALEOTTI P. A warning system for rainfall-induced shallow failures[J]. Engineering Geology, 2004, 73(3/4): 247-265.
    [30] 林振, 卢书强, 梅军. 基于信息量法的湖北省秭归县滑坡易发性评价[J]. 华南地质, 2024, 40(1): 152-161.

    LIN Z, LU S Q, MEI J. Evaluation of landslide susceptibility in Zigui County, Hubei Province based on information quantity method[J]. South China Geology, 2024, 40(1): 152-161. (in Chinese with English abstract
    [31] 梁鑫. 三峡库区万州区滑坡灾害气象风险预警研究[D]. 武汉: 中国地质大学(武汉), 2023.

    LIANG X. Research on meteorological early-warning for landslide risk in Wanzhou District, Three Gorges Reservoir area[D]. Wuhan: China University of Geosciences (Wuhan), 2023. (in Chinese with English abstract
    [32] KOONS P O, UPTON P, BARKER A D. The influence of mechanical properties on the link between tectonic and topographic evolution[J]. Geomorphology, 2012, 137(1): 168-180. doi: 10.1016/j.geomorph.2010.11.012
    [33] 李长江, 麻土华, 李炜, 等. 滑坡频度-降雨量的分形关系[J]. 中国地质灾害与防治学报, 2010, 21(1): 87-93.

    LI C J, MA T H, LI W, et al. Fractal relation of landslide frequency and rainfall[J]. The Chinese Journal of Geological Hazard and Control, 2010, 21(1): 87-93. (in Chinese with English abstract
    [34] SUN Q, WU J B, ZHANG T L, et al. Promoting effect of vegetation onthe initiation of landslides induced by typhoon rainstorms[J]. IOP Conference Series: Earth and Environmental Science, 2021, 861(6): 062005. doi: 10.1088/1755-1315/861/6/062005
    [35] 赵国通, 朱小龙, 马佰衡. 河北省崩塌滑坡滞后于降雨的地质背景分析[J]. 水文地质工程地质, 2015, 42(2): 151-155.

    ZHAO G T, ZHU X L, MA B H. Geological background analysis of the collapse and landslide lagging behind rainfall in Hebei Province[J]. Hydrogeology & Engineering Geology, 2015, 42(2): 151-155. (in Chinese with English abstract
    [36] BERTI M, MARTINA M L V, FRANCESCHINI S, et al. Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach[J]. Journal of Geophysical Research-Earth Surface, 2012, 117(F4): 2012JF002367. doi: 10.1029/2012JF002367
    [37] PASUTO A, SILVANO S. Rainfall as a trigger of shallow mass movements: A case study in the Dolomites, Italy[J]. Environmental Geology, 1998, 35(2): 184-189.
    [38] CROZIER, MICHAEL J. Landslides: Causes, consequences & environment[M]. London: Croom Helm Ltd. , 1986.
    [39] 盛逸凡, 李远耀, 徐勇, 等. 基于有效降雨强度和逻辑回归的降雨型滑坡预测模型[J]. 水文地质工程地质, 2019, 46(1): 156-162.

    SHENG Y F, LI Y Y, XU Y, et al. Prediction of rainfall-type landslides based on effective rainfall intensity and logistic regression[J]. Hydrogeology & Engineering Geology, 2019, 46(1): 156-162. (in Chinese with English abstract
    [40] 唐红梅, 魏来, 高阳华, 等. 基于逻辑回归的重庆地区降雨型滑坡预报模型[J]. 中国地质灾害与防治学报, 2013, 24(3): 32-37.

    TANG H M, WEI L, GAO Y H, et al. A prediction model for rainfall-induced landslide based on logistic regression in Chongqing area[J]. The Chinese Journal of Geological Hazard and Control, 2013, 24(3): 32-37. (in Chinese with English abstract
    [41] 中国气象局, 全国气象防灾减灾标准化技术委员会. 暴雨诱发的地质灾害气象风险预警等级: QX/T487−2019[S]. 北京: 中国标准出版社, 2019.

    China Meteorological Administration, National Technical Committee on Standardization of Meteorological Disaster Prevention and Reduction. Meteorological risk warning level of geological hazards induced by rainstorm: QX/T487−2019[S]. Beijing: Standards Press of China, 2019. (in Chinese)
  • 加载中
图(13) / 表(11)
计量
  • 文章访问数:  105
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-28
  • 录用日期:  2025-10-21
  • 修回日期:  2025-09-29
  • 网络出版日期:  2025-10-31

目录

    /

    返回文章
    返回