留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小应变硬化土模型的软土地基狭窄基坑的抗隆起稳定性

胡科 阎波 太俊 徐伟 王家驹 崔德山 冯晓腊

胡科,阎波,太俊,等. 小应变硬化土模型的软土地基狭窄基坑的抗隆起稳定性[J]. 地质科技通报,2026,45(1):121-134 doi: 10.19509/j.cnki.dzkq.tb20250307
引用本文: 胡科,阎波,太俊,等. 小应变硬化土模型的软土地基狭窄基坑的抗隆起稳定性[J]. 地质科技通报,2026,45(1):121-134 doi: 10.19509/j.cnki.dzkq.tb20250307
HU Ke,YAN Bo,TAI Jun,et al. Basal-heave stability of narrow foundation pit in soft soil foundation based on hardening soil with small-strain stiffness (HSS) model[J]. Bulletin of Geological Science and Technology,2026,45(1):121-134 doi: 10.19509/j.cnki.dzkq.tb20250307
Citation: HU Ke,YAN Bo,TAI Jun,et al. Basal-heave stability of narrow foundation pit in soft soil foundation based on hardening soil with small-strain stiffness (HSS) model[J]. Bulletin of Geological Science and Technology,2026,45(1):121-134 doi: 10.19509/j.cnki.dzkq.tb20250307

小应变硬化土模型的软土地基狭窄基坑的抗隆起稳定性

doi: 10.19509/j.cnki.dzkq.tb20250307
基金项目: 中国市政工程中南设计研究总院有限公司2023年度科技研发项目(KY-N-K-2023-001)
详细信息
    作者简介:

    胡科:E-mail:huke@citic.com

    通讯作者:

    E-mail:cugwangjiaju@cug.edu.cn

  • 中图分类号: TU433

Basal-heave stability of narrow foundation pit in soft soil foundation based on hardening soil with small-strain stiffness (HSS) model

More Information
  • 摘要:

    随着城市化和综合管廊的发展,狭窄型基坑工况日益增多。其支护形式、抗隆起计算方法及破坏模式与宽大基坑差异显著,在软土地层中坑底隆起尤为明显。为了进一步探究软土地基狭窄基坑支护结构的受力变形规律,抗隆起稳定性及其影响因素之间的敏感性关系,以武汉友谊大道快速化改造工程为实例,基于有限元计算和现场监测,采用小应变硬化土(HSS)土体本构模型和强度折减法研究基坑宽度、支护结构插入比、周边荷载和支护结构刚度等对狭窄基坑抗隆起稳定性的影响。结果表明:在支护结构刚度大、支撑间距小的情况下,狭窄基坑在支撑处和两道支撑中点处的受力变形差异不明显。狭窄基坑的变形土体可以分为地表至地表以下一定深度的基坑外侧土体和基坑底部土体,分别引起坑底隆起和坑外地表沉降;狭窄基坑土体塑性区会在坑底和结构底部处形成,随着塑性区发展,逐渐形成交叉的塑性区,并向两侧土体发展直至整个塑性区贯通,狭窄基坑最终破坏。敏感性分析表明,支护结构插入比和支护结构刚度对狭窄基坑抗隆起稳定性有显著的正面影响,基坑宽度和周边荷载则为负相关,且支护结构插入比的相关性最强。研究成果为软土地基狭窄基坑的支护结构设计和稳定性分析提供科学依据。

     

  • 图 1  基底隆起示意图

    ACFGLJ. 土体端点代号;v. 土体运动时的位移速度;H. 基坑开挖深度;B'. 基坑开挖宽度;B'1. 基坑侧壁影响宽度;T. 基坑开挖影响区深度;蓝色实线. KARL[10]提出的破坏模式的基坑开挖面、基坑底面及破坏面;红色虚线. BJERRUM等[11]提出的破坏模式的基坑开挖面、基坑底面及破坏面;下同

    Figure 1.  Schematic diagram of basal heave

    图 2  基坑宽度对基坑隆起破坏模式的影响

    虚线. 传统理论的基坑隆起破坏面;黑色箭头. 土体运动位移方向;D. 支护体系嵌固深度;B1B2B3. 不同的基坑宽度;下同

    Figure 2.  Influence of excavation width on basal-heave failure mode of foundation pit

    图 3  基坑隆起破坏滑移面示意图

    BEIMO. 土体端点代号;H1. 假定滑动面圆心O到基坑开挖底面FG的高度;θ1θ2θ3. 土体之间夹角,分别为∠GOE;∠GOI,∠GOFv0. 假定土体的位移速度,下同

    Figure 3.  Schematic diagram of slip surface of basal-heave failure in foundation pit

    图 4  研究基坑位置(a)和监测点布置(b)

    Figure 4.  Location of studied foundation pit (a) and layout of monitoring points (b)

    图 5  现场监测照片

    a.测斜管;b. 测斜管监测环;c. 监测点

    Figure 5.  Field monitoring photographs

    图 6  狭窄基坑剖面图

    d1. 支撑埋设深度

    Figure 6.  Cross-sectional profile of narrow foundation pit

    图 7  钢板桩的受力变形

    Figure 7.  Stress and deformation of steel sheet piles

    图 8  基坑变形位移云图(a. 基坑横向位移;b. 基坑纵向位移)

    Figure 8.  Cloud diagrams of excavation-induced displacements

    图 9  基坑土体强度参数折减前后的偏应变增量云图(a. 折减前;b. 折减后)

    Figure 9.  Cloud diagrams of deviatoric strain increment before and after reduction of soil strength parameters in foundation pit

    图 10  基坑土体强度参数折减前后增量位移图

    a,b. 分别为折减前、后增量位移云图;c,d. 分别为折减前、后增量位移矢量图

    Figure 10.  Diagrams of incremental displacement before and after reduction of soil strength parameters in foundation pit

    图 11  相对剪应力云图

    Figure 11.  Cloud diagram of relative shear stress

    图 12  基坑宽度(a)、支护结构插入比(b)、周边荷载(c)和支护结构刚度(d)对狭窄基坑抗隆起稳定性的影响

    通过调整模拟钢板桩的板单元的等效厚度,来反映不同型号钢板桩的规格变化,进而改变支护结构刚度,即等效厚度等效替代支护结构刚度

    Figure 12.  Effect of excavation width(a), embedment ratio of the support structure(b), surcharge loads(c) and stiffness of the support structure(d) on basal-heave stability of narrow foundation pit

    图 13  影响因素的皮尔逊相关系数分析

    Figure 13.  Analysis of Pearson correlation coefficients of influencing factors

    表  1  土体物理力学参数

    Table  1.   Physical and mechanical parameters of soil

    土层 杂填土 素填土 互层土 粉砂 粉细砂
    z/m 1.5 2.8 11.7 20 51.8
    γ/(kN·m−3) 18.5 18.2 18.2 18.6 18.8
    γsat/(kN·m−3) 19 18.7 18.7 19.1 19.3
    $E_{50}^{\mathrm{ref}} $/MPa 6.346 5.389 7.5 18.0 28.0
    $E_{{\mathrm{oed}}}^{\mathrm{ref}} $/MPa 6.346 5.389 7.5 18.0 28.0
    $E_{{\mathrm{ur}}}^{\mathrm{ref}} $/MPa 19.04 16.17 22.5 54.0 84.0
    $G_{0}^{\mathrm{ref}} $/MPa 7.933 6.737 62.4 70.94 70.94
    γ0.7 7.51×10−4 1.07×10−3 1.80×10−4 4.20×10−4 1.00×10−3
    c/kPa 10 12 5 0 0
    φ/(°) 18 10 15 33 31
    ψ/(°) 0 0 0 3 1
      注:z. 土层底面埋深;γ. 天然重度;γsat. 饱和重度;$E_{50}^{{\mathrm{ref}}} $. 参考割线刚度;$E_{{\mathrm{oed}}}^{{\mathrm{ref}}} $. 参考压缩模量;$E_{{\mathrm{ur}}}^{{\mathrm{ref}}} $. 参考卸载-再加载模量;$G_{0}^{{\mathrm{ref}}} $. 参考初始剪切模量;γ0.7. 阈值剪应变;c. 黏聚力;φ. 内摩擦角;ψ. 剪胀角
    下载: 导出CSV

    表  2  支护结构物理力学参数

    Table  2.   Physical and mechanical parameters of support structure

    支护结构 型号 等效厚度/m 直径/m 壁厚/m 弹性模量/GPa
    钢管 0.325 0.012 30
    拉森钢板桩 400×160 0.18 200
    400×170 0.19 200
    500×200 0.25 200
    下载: 导出CSV

    表  3  基于不同计算方法的稳定性系数计算结果

    Table  3.   Stability coefficient calculation results by different methods

    计算方法 规范法 本研究改进
    公式法
    数值
    模拟法
    整体稳定性 坑底抗隆起稳定性
    稳定性系数 1.596 1.600 1.772 4.926
    下载: 导出CSV

    表  4  影响因素的重要程度及其排序

    Table  4.   Importance and ranking of influencing factors

    影响因素 皮尔逊相关系数
    重要程度 排列顺序
    基坑宽度 −0.13 3
    周边荷载 −0.24 2
    支护结构插入比 0.99 1
    支护结构刚度 0.085 4
    下载: 导出CSV
  • [1] 姜晨光, 贺勇, 朱烨昕. 基坑形状与基坑稳定性关系的实测与分析[J]. 岩土工程技术, 2007, 21(5): 246-249. doi: 10.3969/j.issn.1007-2993.2007.05.008

    JIANG C G, HE Y, ZHU Y X. Relationship between the plane shape of foundation pit and its stability[J]. Geotechnical Engineering Technique, 2007, 21(5): 246-249. (in Chinese with English abstract doi: 10.3969/j.issn.1007-2993.2007.05.008
    [2] 洪春欣. 基坑形状与基坑稳定性关系实测研究[J]. 居舍, 2022(8): 175-177.

    HONG C X. Empirical research on the relationship between foundation pit shape and stability[J]. Dwelling House, 2022(8): 175-177. (in Chinese with English abstract
    [3] 梁艳, 刘新根, 邓朝辉, 等. 开挖尺寸效应对基坑稳定性的影响分析[J]. 铁道建筑技术, 2022(2): 57-61. doi: 10.3969/j.issn.1009-4539.2022.02.013

    LIANG Y, LIU X G, DENG Z H, et al. Analysis on the influence of excavation size effects on foundation pit stability[J]. Railway Construction Technology, 2022(2): 57-61. (in Chinese with English abstract doi: 10.3969/j.issn.1009-4539.2022.02.013
    [4] 王洪新. 考虑二维和三维尺寸效应的基坑抗隆起稳定安全系数[J]. 岩土工程学报, 2013, 35(11): 2144-2152.

    WANG H X. Safety factor of heave-resistant stability considering two- and three-dimensional size effects of foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2144-2152. (in Chinese with English abstract
    [5] HUANG P, DANG K X, SHI H L, et al. Influence and mechanism of the excavation width on excavation deformations in Shanghai soft clay[J]. Buildings, 2024, 14(5): 1450. doi: 10.3390/buildings14051450
    [6] 庄海洋, 张艳书, 薛栩超, 等. 深软场地地铁狭长深基坑变形特征实测与已有统计结果的对比分析[J]. 岩土力学, 2016, 37(增刊2): 561-570. doi: 10.16285/j.rsm.2016.S2.071

    ZHUANG H Y, ZHANG Y S, XUE X C, et al. Deformation characteristics of narrow-long deep foundation pit for a subway station in soft ground and compared with existing statistical results[J]. Rock and Soil Mechanics, 2016, 37(S2): 561-570. (in Chinese with English abstract doi: 10.16285/j.rsm.2016.S2.071
    [7] 胡敏云, 苟长飞, 严昱翔, 等. 基坑宽度效应对基坑稳定性影响的有限元分析[J]. 地基处理, 2020, 2(1): 1-8.

    HU M Y, GOU C F, YAN Y X, et al. Finite element analysis of the effect of foundation pit width on its stability[J]. Chinese Journal of Ground Improvement, 2020, 2(1): 1-8. (in Chinese with English abstract
    [8] FAHEEM H, CAI F, UGAI K. Three-dimensional base stability of rectangular excavations in soft soils using FEM[J]. Computers and Geotechnics, 2004, 31(2): 67-74. doi: 10.1016/j.compgeo.2004.02.005
    [9] 潘静杰, 朱春柏, 刘伟, 等. 外基坑宽度对坑中坑条件下被动土压力的影响[J]. 地质科技通报, 2023, 42(1): 62-69. doi: 10.19509/j.cnki.dzkq.2022.0167

    PAN J J, ZHU C B, LIU W, et al. Influence of external pit width on passive earth pressure under pit-in-pit condition[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 62-69. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.2022.0167
    [10] KARL T. Theoretical soil mechanics[M]. Hoboken: Wiley, 1943.
    [11] BJERRUM L, EIDE O. Stability of strutted excavations in clay[J]. Géotechnique, 1956, 6(1): 32-47. doi: 10.1680/geot.1956.6.1.32
    [12] PRANDTL L. Theory of lifting surfaces. Part 2[J]. Technical Report Archive & Image Library, 1920: 1-10.
    [13] BOSE S K, SOM N N. Parametric study of a braced cut by finite element method[J]. Computers and Geotechnics, 1998, 22(2): 91-107. doi: 10.1016/S0266-352X(97)00033-5
    [14] ZHENG G, ZHEN J, CHENG X S, et al. Basal heave stability analysis of excavations considering the soil strength increasing with depth[J]. Computers and Geotechnics, 2024, 166: 106026. doi: 10.1016/j.compgeo.2023.106026
    [15] 施广焕. 关于基坑整体稳定性分析的探讨[C]//全国建筑工程勘察科技情报网, 内蒙古自治区勘察设计协会岩土分会, 全国建筑工程勘察科技情报网华北情报站, 等. 2014全国工程勘察学术大会论文集. [出版地不详]: [出版者不详], 2014: 322-325.

    SHI G H. Discussion on the overall stability analysis of the excavations[C]//National Engineering Survey Technology Information Network, Inner Mongolia Autonomous Region Survey and Design Association Geotechnical Engineering Branch, National Engineering Survey Technology Information North China Information Station, et al. Proceedings of the 2014 National Engineering Survey Academic Conference. [S. l. ]: [s. n. ], 2014: 322-325. (in Chinese)
    [16] 施琦. 考虑空间效应的狭长型沟槽基坑稳定性计算方法研究[J]. 城市道桥与防洪, 2021(8): 283-285. doi: 10.16799/j.cnki.csdqyfh.2021.08.073

    SHI Q. Research on stability calculation method of long-narrow groove foundation pit considering spatial effect[J]. Urban Roads Bridges & Flood Control, 2021(8): 283-285. (in Chinese with English abstract doi: 10.16799/j.cnki.csdqyfh.2021.08.073
    [17] 卢瀚. 淤泥区狭长基坑抗隆起稳定性分析[J]. 城市道桥与防洪, 2022(12): 248-251.

    LU H. Study on anti-heave stability of narrow-long foundation pit in silt area[J]. Urban Roads Bridges & Flood Control, 2022(12): 248-251. (in Chinese with English abstract
    [18] 应宏伟, 王小刚, 张金红. 考虑基坑宽度影响的基坑抗隆起稳定分析[J]. 工程力学, 2018, 35(5): 118-124. doi: 10.6052/j.issn.1000-4750.2017.01.0054

    YING H W, WANG X G, ZHANG J H. Analysis on heave-resistant stability considering the effect of excavation width[J]. Engineering Mechanics, 2018, 35(5): 118-124. (in Chinese with English abstract doi: 10.6052/j.issn.1000-4750.2017.01.0054
    [19] 阳吉宝, 黄星. 窄基坑隆起破坏模式及抗隆起稳定性验算研究[J]. 建筑结构, 2021, 51(增刊2): 1495-1503.

    YANG J B, HUANG X. Research on uplift failure mode and anti-uplift stability checking calculation of narrow excavation[J]. Building Structure, 2021, 51(S2): 1495-1503. (in Chinese with English abstract
    [20] 俞建霖, 龙岩, 夏霄, 等. 狭长型基坑工程坑底抗隆起稳定性分析[J]. 浙江大学学报(工学版), 2017, 51(11): 2165-2174. doi: 10.3785/j.issn.1008-973X.2017.11.010

    YU J L, LONG Y, XIA X, et al. Basal stability for narrow foundation pit[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(11): 2165-2174. (in Chinese with English abstract doi: 10.3785/j.issn.1008-973X.2017.11.010
    [21] 宋二祥, 付浩, 李贤杰, 等. 饱和黏性地层中基坑坑底抗隆起稳定验算方法[J]. 土木工程学报, 2021, 54(10): 97-105.

    SONG E X, FU H, LI X J, et al. Checking method for basal heave stability of deep excavation in saturated cohesive soil[J]. China Civil Engineering Journal, 2021, 54(10): 97-105. (in Chinese with English abstract
    [22] JIN Z X, ZHANG C P, LI W, et al. Stability analysis for excavation in frictional soils based on upper bound method[J]. Computers and Geotechnics, 2024, 165: 105916. doi: 10.1016/j.compgeo.2023.105916
    [23] HE C H, LU Y, YANG Y L. Effect of size on the stability of narrow foundation pits[J]. Advances in Civil Engineering, 2022, 2022(1): 7391622. doi: 10.1155/2022/7391622
    [24] KE W H, WANG X, YAN C Z, et al. Numerical study of rock damage mechanism induced by blasting excavation using finite discrete element method[J]. Applied Sciences, 2022, 12(15): 7517. doi: 10.3390/app12157517
    [25] KUNG G T, OU C Y, JUANG C H. Modeling small-strain behavior of Taipei clays for finite element analysis of braced excavations[J]. Computers and Geotechnics, 2009, 36(1/2): 304-319. doi: 10.1016/j.compgeo.2008.01.007
    [26] CAO M M, ZHANG Z, DU Z B, et al. Experimental study of hardening small strain model parameters for strata typical of Zhengzhou and their application in foundation pit engineering[J]. Buildings, 2023, 13(11): 2784. doi: 10.3390/buildings13112784
    [27] 居尚威, 李雄威, 刘正明, 等. 基于HSS模型预测基坑开挖影响下的管线安全性分析[J]. 常州工学院学报, 2017, 30(1): 7-12. doi: 10.3969/j.issn.1671-0436.2017.01.002

    JU S W, LI X W, LIU Z M, et al. Safety analysis for excavation-induced impact on surrounding pipelines based on an HSS model[J]. Journal of Changzhou Institute of Technology, 2017, 30(1): 7-12. (in Chinese with English abstract doi: 10.3969/j.issn.1671-0436.2017.01.002
    [28] 何亮, 刘涛, 郭严伟. HSS模型在常州轨道交通基坑工程中的应用研究[J]. 江苏建筑, 2022(6): 117-121. doi: 10.3969/j.issn.1005-6270.2022.06.027

    HE L, LIU T, GUO Y W. Application research of HSS model in Changzhou rail transit foundation pit engineering[J]. Jiangsu Construction, 2022(6): 117-121. (in Chinese with English abstract doi: 10.3969/j.issn.1005-6270.2022.06.027
    [29] 吴小斌, 罗元喜, 何亮, 等. 土体小应变硬化模型的深基坑变形特性数值分析[J]. 科技创新导报, 2019, 16(3): 53-55. doi: 10.16660/j.cnki.1674-098X.2019.03.053

    WU X B, LUO Y X, HE L, et al. Numerical analysis of deformation characteristics of deep foundation pit with small strain hardening model of soil[J]. Science and Technology Innovation Herald, 2019, 16(3): 53-55. (in Chinese with English abstract doi: 10.16660/j.cnki.1674-098X.2019.03.053
    [30] 林德周. 小应变土体硬化模型参数试验研究及工程应用: 以杭州某基坑工程为例[D]. 杭州: 浙江大学, 2022.

    LIN D Z. Experimental study on parameters of small strain soil hardening model and its engineering application: A case study of a foundation pit project in Hangzhou[D]. Hangzhou: Zhejiang University, 2022. (in Chinese with English abstract
    [31] 温科伟, 刘树亚, 杨红坡. 基于小应变硬化土模型的基坑开挖对下穿地铁隧道影响的三维数值模拟分析[J]. 工程力学, 2018, 35(增刊1): 80-87.

    WEN K W, LIU S Y, YANG H P. Three-dimensional numerical simulation analysis of the influence of pit excavation based on hardening soil-small strain model for metro tunnel[J]. Engineering Mechanics, 2018, 35(S1): 80-87. (in Chinese with English abstract
    [32] MU L L, HUANG M S. Small strain based method for predicting three-dimensional soil displacements induced by braced excavation[J]. Tunnelling and Underground Space Technology, 2016, 52: 12-22. doi: 10.1016/j.tust.2015.11.001
    [33] ZIENKIEWICZ O C, HUMPHESON C, LEWIS R W. Associated and non-associated visco-plasticity and plasticity in soil mechanics[J]. Géotechnique, 1975, 25(4): 671-689. doi: 10.1680/geot.1975.25.4.671
    [34] MILLÁN M A, MENCÍAS-CARRIZOSA D, CALLE A. Sustainability of discontinuously supported slopes in temporary shallow excavations for building construction: A stability analysis procedure[J]. Sustainability, 2024, 16(23): 10393. doi: 10.3390/su162310393
    [35] 程昊, 陈辉, 张抒, 等. 基于响应面试验设计的深基坑降水开挖地表沉降特性[J]. 地质科技通报, 2024, 43(5): 181-196. doi: 10.19509/j.cnki.dzkq.tb20230294

    CHENG H, CHEN H, ZHANG S, et al. Investigations into ground surface settlement characteristics of excavation under dewatering and excavating conditions using the response surface experimental design method[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 181-196. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20230294
    [36] 高旭, 晏鄂川, 尹晓萌, 等. 武汉地区某基坑二元结构地层渗透系数反演[J]. 地质科技情报, 2017, 36(3): 218-224. doi: 10.19509/j.cnki.dzkq.2017.0329

    GAO X, YAN E C, YIN X M, et al. Permeability inversion of dual structure formation of a foundation pit in Wuhan[J]. Geological Science and Technology Information, 2017, 36(3): 218-224. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.2017.0329
    [37] 中华人民共和国住房和城乡建设部. 建筑基坑支护技术规程: JGJ120−2012[S]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical specification for retaining and protection of building foundation excavations: JGJ120−2012[S]. Beijing: China Architecture & Building Industry Press, 2012. (in Chinese)
    [38] BENZ T, VERMEER P A, SCHWAB R. A small-strain overlay model[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2010, 33(1): 25-44.
    [39] 寇海磊, 周超, 闫正余, 等. 基于小应变硬化土模型的黏性土本构参数研究及其工程应用[J]. 海洋湖沼通报, 2023, 45(4): 16-22. doi: 10.13984/j.cnki.cn37-1141.2023.04.003

    KOU H L, ZHOU C, YAN Z Y, et al. Research and engineering application of constitutive parameters of cohesive soil based on small strain hardening soil model[J]. Transactions of Oceanology and Limnology, 2023, 45(4): 16-22. (in Chinese with English abstract doi: 10.13984/j.cnki.cn37-1141.2023.04.003
    [40] GOH A T C, ZHANG F, ZHANG W G, et al. A simple estimation model for 3D braced excavation wall deflection[J]. Computers and Geotechnics, 2017, 83: 106-113. doi: 10.1016/j.compgeo.2016.10.022
    [41] 李广. 拉森钢板桩在深大基坑支护中的应用以及土压力分布规律研究[D]. 江西抚州: 东华理工大学, 2022.

    LI G. Application and study on earth pressure distribution law of larsen steel sheet pile in deep and large foundation pit support[D]. Fuzhou Jiangxi: East China Institute of Technology, 2022. (in Chinese with English abstract
    [42] ZHANG X, WANG L B, MA M S, et al. Stability analysis of the foundation pit and the twin shield tunnels during adjacent construction[J]. Buildings, 2023, 13(4): 1000. doi: 10.3390/buildings13041000
    [43] WANG J C, CUI D S, CHEN Q, et al. Morphological damage and strength deterioration of red sandstone under freeze-thaw cycles[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2025, 17(2): 671-687.
    [44] SUN Y Y, ZHOU S H, LUO Z. Basal-heave analysis of pit-in-pit braced excavations in soft clays[J]. Computers and Geotechnics, 2017, 81: 294-306. doi: 10.1016/j.compgeo.2016.09.003
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  59
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-01
  • 录用日期:  2025-11-18
  • 修回日期:  2025-11-10
  • 网络出版日期:  2025-12-15

目录

    /

    返回文章
    返回

    温馨提示:近日,有不明身份人员冒充本刊编辑部或编委会给作者发送邮件,以论文质量核查等为由,要求作者添加微信。请作者提高警惕,认准编辑部官方邮箱、电话和QQ群,注意甄别虚假信息,谨防上当受骗。如有疑问,可及时联系编辑部核实。

     《地质科技通报》编辑部