留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于常规测井曲线的火山岩裂缝预测:以渤海湾盆地渤南地区中生界为例

邵志远 何杰 廖远涛 佟殿君 任建业 陈文强 王华

邵志远,何杰,廖远涛,等. 基于常规测井曲线的火山岩裂缝预测:以渤海湾盆地渤南地区中生界为例[J]. 地质科技通报,2025,44(5):82-94 doi: 10.19509/j.cnki.dzkq.tb20250144
引用本文: 邵志远,何杰,廖远涛,等. 基于常规测井曲线的火山岩裂缝预测:以渤海湾盆地渤南地区中生界为例[J]. 地质科技通报,2025,44(5):82-94 doi: 10.19509/j.cnki.dzkq.tb20250144
SHAO Zhiyuan,HE Jie,LIAO Yuantao,et al. Prediction of volcanic rock fractures based on conventional logging curves: A case study of the Mesozoic in the Bonan area, Bohai Bay Basin[J]. Bulletin of Geological Science and Technology,2025,44(5):82-94 doi: 10.19509/j.cnki.dzkq.tb20250144
Citation: SHAO Zhiyuan,HE Jie,LIAO Yuantao,et al. Prediction of volcanic rock fractures based on conventional logging curves: A case study of the Mesozoic in the Bonan area, Bohai Bay Basin[J]. Bulletin of Geological Science and Technology,2025,44(5):82-94 doi: 10.19509/j.cnki.dzkq.tb20250144

基于常规测井曲线的火山岩裂缝预测:以渤海湾盆地渤南地区中生界为例

doi: 10.19509/j.cnki.dzkq.tb20250144
基金项目: 中国石油(中国)有限公司天津分公司科技项目“渤南地区走滑断裂控缝机制与潜山优质储层发育规律”(CCL2024TJX0NST0044)
详细信息
    作者简介:

    邵志远:E-mail:2929749542@qq.com

    通讯作者:

    E-mail:jiehe19920402@163.com

  • 中图分类号: P618.13;P631.8

Prediction of volcanic rock fractures based on conventional logging curves: A case study of the Mesozoic in the Bonan area, Bohai Bay Basin

More Information
  • 摘要:

    构造成因裂缝对改善深层火山岩潜山储层物性和提高油气产能具有重要意义,由于其非均质性较强,需要对断裂带不同部位的裂缝发育密度进行精细刻画。实际生产中由于岩心和成像测井资料获取成本较高,因此引入基于常规测井曲线计算的综合裂缝指数,据此划分断裂带内部结构,定量识别裂缝发育密度,为火山岩裂缝型储层勘探提供依据。通过声波时差(AC)、中子孔隙度(CN)、密度(DEN)、井径(CAL)、深侧向电阻率(RD)、浅侧向电阻率(RS)和微侧向电阻率(RMLL)7种测井参数,构建了渤海湾盆地渤南地区中生界火山岩综合裂缝指数(CFI)模型;利用累计CFI曲线斜率变化定量划分了裂缝发育密集段边界,将断裂带内部分别划分为断核、损伤带和围岩,裂缝在损伤带内发育密度最大,其次为围岩,在断核内几乎不发育。研究区中生界火山岩中7种常见测井曲线在裂缝发育带中分别表现为ACCNCAL值增大,DENRDRSRMLL值减小的响应特征,CFI值在裂缝发育位置出现明显上升。结合成像测井和岩心资料表明,CFI曲线高值区与裂缝发育段呈对应关系。结合地震解释确定断核后,可以明确损伤带及围岩分布范围并进一步对渤南地区中生界火山岩中的裂缝进行有效预测。基于测井曲线计算的CFI模型能有效量化火山岩裂缝发育强度,定位裂缝发育密集带的井下空间位置,通过累计CFI曲线可实现断裂带内部结构的有效识别。

     

  • 图 1  渤海湾盆地位置及中生界火山岩分布图(a)以及渤南地区构造地质图(b)[617]

    Figure 1.  Location of the Bohai Bay Basin and distribution map of Mesozoic volcanic rocks (a) and structural geological map of the Bonan area (b)

    图 2  断裂带内部结构(断核、损伤带和围岩)划分示意图[19]

    Figure 2.  Schematic illustrating of the internal structure of a fault zone (fault core, damage zone, and host rock)

    图 3  基于BN-2和BN-7井测井曲线在裂缝带与非裂缝带响应测井交会图

    CN. 中子孔隙度;AC. 声波时差;DEN. 密度;CAL. 井径;GR. 自然伽马;SP. 自然电位;RS. 浅侧向电阻率;RD. 深侧向电阻率;RMLL. 微侧向电阻率;下同

    Figure 3.  Cross-plots of logging responses for fracture zones and non-fracture zones using logs from wells BN-2 and BN-7

    图 4  测井曲线在裂缝带的响应特征

    Figure 4.  Logging-response characteristics in fractured zones

    图 5  BN-9井声波时差、中子孔隙度和密度测井曲线处理与实测孔隙度曲线对比图

    CACR. 声波时差差异比率;NACR*. 归一化声波时差差异比率;NACR. 声波时差裂缝指数;CCNLR. 中子孔隙度差异比率;NCNLR*. 归一化中子孔隙度差异比率;NCNLR. 中子孔隙度裂缝指数;CDENR. 密度差异比率;NDENR*. 归一化密度差异比率;NDENR. 密度裂缝指数;下同

    Figure 5.  Comparison of processed acoustic travel-time, neatron porosity, density logging curves with measured porosity curve in Well BN-9

    图 6  BN-9井井径和电阻率测井曲线处理与实测孔隙度曲线对比图

    CCALR. 井径差异比率;NCALR*. 归一化井径差异比率;NCALR. 井径裂缝指数;CRDR. 深侧向电阻率差异比率;CRSR. 浅侧向电阻率差异比率;CRMLLR. 微侧向电阻率差异比率; NRDR*. 归一化深侧向电阻率差异比率;NRSR*. 归一化浅侧向电阻率差异比率;NRMLLR*. 归一化微侧向电阻率差异比率;NRDR. 深侧向电阻率裂缝指数;NRSR. 浅侧向电阻率裂缝指数;NRMLLR. 微侧向电阻率裂缝指数;下同

    Figure 6.  Comparison of processed caliper, and resistivity logging curves with measured porosity curve in Well BN-9

    图 7  BN-9井综合裂缝指数(CFI)与实测孔隙度对比图

    Figure 7.  Comparison of the comprehensive fracture index (CFI) and measured porosity in Well BN-9

    图 8  BN-1中生界断裂地震剖面解释图(T8,Tg8分别为中生界顶、底界面,剖面位置见图1b)

    Figure 8.  Seismic-profile interpretation of the Mesozoic fault in Well BN-1

    图 9  BN-1井中生界断裂内部结构划分

    Figure 9.  Internal-structure division of the Mesozoic fracture zone in Well BN-1

  • [1] 徐长贵, 杨海风, 王清斌, 等. 火山岩油气藏勘探进展[J]. 地球科学, 2025, 50(2): 363-376.

    XU C G, YANG H F, WANG Q B, et al. Progress in exploration of volcanic oil and gas reservoirs[J]. Earth Science, 2025, 50(2): 363-376. (in Chinese with English abstract
    [2] 胡见义, 陈英, 郑俊章. 东北亚天然气资源及其发展趋势[J]. 石油学报, 2003, 24(1): 1-8.

    HU J Y, CHEN Y, ZHENG J Z. Natural gas resources and its development trend in Northeast Asia[J]. Acta Petrolei Sinica, 2003, 24(1): 1-8. (in Chinese with English abstract
    [3] WANG X, ZENG J H, LIU B, et al. Insights into the wetting mechanisms in low-permeability sandstone reservoirs and its evolution processes: The Shahejie Formation in the Dongying Depression, Bohai Bay Basin[J]. Marine and Petroleum Geology, 2025, 171: 107179. doi: 10.1016/j.marpetgeo.2024.107179
    [4] ZHOU X H, WANG D Y, YU H B, et al. Major controlling factors and hydrocarbon accumulation models of large-scale lithologic reservoirs in shallow strata around the Bozhong Sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2022, 49(4): 758-769. doi: 10.1016/S1876-3804(22)60308-2
    [5] ZHANG X N, YAO Y B, ZHANG G B, et al. Natural fractures in a metamorphic buried hill reservoir, Bozhong 19-6 area, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2023, 155: 106402. doi: 10.1016/j.marpetgeo.2023.106402
    [6] 陆国超. 渤海湾盆地莱州湾凹陷南斜坡带中生界火山岩储层特征与分类评价[D]. 长春: 吉林大学, 2024.

    LU G C. Characteristics and classification evaluation of Mesozoic volcanic reservoivs in the southern slope of Laizhouwan Sag, Bohai Bay Basin[D]. Changchun: Jilin University, 2024. (in Chinese with English abstract
    [7] 单玄龙, 徐长贵, 衣健, 等. 中国近海典型含油气盆地中生代岩浆活动与岩浆岩潜山油气藏[J]. 吉林大学学报(地球科学版), 2024, 54(6): 1773-1787.

    SHAN X L, XU C G, YI J, et al. Mesozoic magmatic activities and hydrocarbon accumulations in magmatic buried hills in typical offshore oil and gas basins of China[J]. Journal of Jilin University (Earth Science Edition), 2024, 54(6): 1773-1787. (in Chinese with English abstract
    [8] 陈秀娟, 冯镇涛, 曾芙蓉, 等. 页岩地层测井岩性识别技术发展现状[J]. 新疆石油地质, 2024, 45(6): 742-752.

    CHEN X J, FENG Z T, ZENG F R, et al. Development status of logging-based lithology identification technology for shale formations[J]. Xinjiang Petroleum Geology, 2024, 45(6): 742-752. (in Chinese with English abstract
    [9] XU H R, JU W, NIU X B, et al. Prediction of natural fracture in shale oil reservoir based on R/S analysis and conventional logs[J]. Frontiers of Earth Science, 2021, 15(3): 705-718. doi: 10.1007/s11707-020-0843-z
    [10] YANG C, HOU L H, YANG F, et al. Controlling factors of volcanic hydrocarbon reservoirs in Bohai Bay Basin, China[J]. Journal of Natural Gas Geoscience, 2017, 2(4): 219-228. doi: 10.1016/j.jnggs.2017.10.001
    [11] YANG T, CUI R, CAO Y C, et al. Characteristics and diagenetic model of hyperpycnite reservoirs in the gentle slope of a lacustrine rift basin: A case study from the Third Member of the Eocene Shahejie Formation, Bonan Sag, Bohai Bay Basin, eastern China[J]. AAPG Bulletin, 2024, 108(11): 2093-2125. doi: 10.1306/07232423029
    [12] 王文华. 四川盆地西部二叠系火山岩岩性、岩相和储层控制因素研究[D]. 长春: 吉林大学, 2024.

    WANG W H. Lithology, lithofacies and reservoir control factors of Permian volcanic rocks in western Sichuan Basin[D]. Changchun: Jilin University, 2024. (in Chinese with English abstract
    [13] 陈井胜, 李斌, 姚玉来, 等. 辽东北−吉南中生代火山岩地层与辽西义县组的对比[J]. 地质学报, 2016, 90(10): 2733-2746.

    CHEN J S, LI B, YAO Y L, et al. Comparison between Mesozoic volcanic rock strata in northeast of Liaoning-south of Jilin and Yixian Formationg in west of Liaoning[J]. Acta Geologica Sinica, 2016, 90(10): 2733-2746. (in Chinese with English abstract
    [14] 潘玉啟, 黄志安, 吴子杰, 等. 辽宁阜新地区义县组火山岩特征及喷发旋回划分[J]. 地质与资源, 2014, 23(增刊1): 21-26.

    PAN Y Q, HUANG Z A, WU Z J, et al. Characteristics of volcanic rocks and division of eruption cycles of the Yixian Formation in Fuxin, Liaoning Province[J]. Geology and Resources, 2014, 23(S1): 21-26. (in Chinese with English abstract
    [15] 吴庆勋, 王粤川, 韦阿娟, 等. 渤海海域中生代火山岩喷发旋回划分及与油气的关系[J]. 中国海上油气, 2017, 29(2): 18-26.

    WU Q X, WANG Y C, WEI A J, et al. Division of the Mesozoic volcanic rock eruption cycle and its relationship with oil and gas in the Bohai Sea[J]. China Offshore Oil and Gas, 2017, 29(2): 18-26. (in Chinese with English abstract
    [16] 蔡冬梅, 叶涛, 鲁凤婷, 等. 渤海海域中生界火山岩岩相特征及其识别方法[J]. 岩性油气藏, 2018, 30(1): 112-120.

    CAI D M, YE T, LU F T, et al. Lithofacies characteristics and identification methods of Mesozoic volcanic rocks in Bohai Sea[J]. Lithologic Reservoirs, 2018, 30(1): 112-120. (in Chinese with English abstract
    [17] 岳庆友. 渤中凹陷中生界火山岩成储机理及分布规律研究[D]. 长春: 吉林大学, 2021.

    YUE Q Y. Formation mechanism and distribution of the Mesozoic volcanic reservoir in Bozhong Sag[D]. Changchun: Jilin University, 2021. (in Chinese with English abstract
    [18] 杨海风, 叶涛, 燕歌, 等. 渤中凹陷及周边地区中生界大中型火山岩油气田成藏条件及模式[J]. 中国海上油气, 2025, 37(1): 1-12.

    YANG H F, YE T, YAN G, et al. Reservoir-forming conditions and models of large-and medium-sized Mesozoic volcanic oil and gas fields in the Bozhong Sag and its surrounding areas[J]. China Offshore Oil and Gas, 2025, 37(1): 1-12. (in Chinese with English abstract
    [19] CHOI J H, EDWARDS P, KO K, et al. Definition and classification of fault damage zones: A review and a new methodological approach[J]. Earth-Science Reviews, 2016, 152: 70-87. doi: 10.1016/j.earscirev.2015.11.006
    [20] QUEVEDO R, DE ANDRADE T J, SANTOS L, et al. Assessment of fault damage zones in carbonate rocks based on numerical and sensitivity analyses[J]. Tectonophysics, 2023, 864: 230023. doi: 10.1016/j.tecto.2023.230023
    [21] BALSAMO F, CLEMENZI L, STORTI F, et al. Tectonic control on vein attributes and deformation intensity in fault damage zones affecting Natih Platform carbonates, Jabal Qusaybah, North Oman[J]. Journal of Structural Geology, 2019, 122: 38-57. doi: 10.1016/j.jsg.2019.02.009
    [22] NUNES K, QUEVEDO R, ROEHL D, et al. Assessment of linking damage zones of geological faults through numerical modeling[J]. Journal of Structural Geology, 2025, 195: 105381. doi: 10.1016/j.jsg.2025.105381
    [23] FOSSEN H, ROTEVATN A. Fault linkage and relay structures in extensional settings: A review[J]. Earth-Science Reviews, 2016, 154: 14-28. doi: 10.1016/j.earscirev.2015.11.014
    [24] 任梦怡, 范洪军, 陆国超, 等. 渤海莱州湾凹陷南斜坡中生界火山岩储层特征和控制因素[J]. 吉林大学学报(地球科学版), 2025, 55(1): 15-30.

    REN M Y, FAN H J, LU G C, et al. Characteristics and controlling factors of Mesozoic volcanic rock reservoir in southern slope of Laizhou Bay Depression, Bohai Bay Basin[J]. Journal of Jilin University (Earth Science Edition), 2025, 55(1): 15-30. (in Chinese with English abstract
    [25] STERLING J C L J L. Natural fractures in the spraberry formation, Midland Basin, Texas: The effects of mechanical stratigraphy on fracture variability and reservoir behavior[J]. AAPG Bulletin, 2002, 86(3): 505-524.
    [26] ZENG L B, LI X Y. Fractures in sandstone reservoirs with ultra-low permeability: A case study of the Upper Triassic Yanchang Formation in the Ordos Basin, China[J]. AAPG Bulletin, 2009, 93(4): 461-477. doi: 10.1306/09240808047
    [27] 赖锦, 苏洋, 肖承文, 等. 地球物理测井在地质领域应用经典案例解析[J]. 地质科技通报, 2024, 43(5): 279-288.

    LAI J, SU Y, XIAO C W, et al. Analysis of typical applications of geophysical well logs in geological fields[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 279-288. (in Chinese with English abstract
    [28] 孟玉净, 陈红汉, 赵彦超, 等. 鄂尔多斯盆地南部泾河油田延长组板内走滑断裂内部结构刻画[J]. 地球科学, 2023, 48(6): 2281-2293.

    MENG Y J, CHEN H H, ZHAO Y C, et al. Characterization of architecture of intraplate strike-slip faults in Yanchang Formation of Jinghe oilfield in southern Ordos Basin[J]. Earth Science, 2023, 48(6): 2281-2293. (in Chinese with English abstract
    [29] 邓攀, 陈孟晋, 高哲荣, 等. 火山岩储层构造裂缝的测井识别及解释[J]. 石油学报, 2002, 23(6): 32-36. doi: 10.3321/j.issn:0253-2697.2002.06.007

    DENG P, CHEN M J, GAO Z R, et al. Log response and explanation of structural fractures in volcanic rock reservoir[J]. Acta Petrolei Sinica, 2002, 23(6): 32-36. (in Chinese with English abstract doi: 10.3321/j.issn:0253-2697.2002.06.007
    [30] 刘粤蛟, 赖富强, 徐浩, 等. 基于测井曲线深程度耦合的页岩岩相智能识别方法[J]. 地质科技通报, 2025, 44(1): 308-320.

    LIU Y J, LAI F Q, XU H, et al. Intelligent identification methods for shale lithology based on the coupling deeply of logging curves[J]. Bulletin of Geological Science and Technology, 2025, 44(1): 308-320. (in Chinese with English abstract
    [31] 张苗. 渤海海域潜山火山岩储层有效性测井评价方法研究: 以M构造为例[D]. 武汉: 长江大学, 2024.

    ZHANG M. Investigation into the Bohai Sea's buried hill volcanic reservoir's efficient logging assessment method: An analysis of the M structure[D]. Wuhan: Yangtze University, 2024. (in Chinese with English abstract
    [32] 蒲俊伟, 罗彤彤, 陈维铭, 等. 利用常规测井曲线辅助探究深层页岩气井产量差异[J]. 石化技术, 2024, 31(12): 267-269.

    PU J W, LUO T T, CHEN W M, et al. Using conventional logging curve to explore the production difference of deep shale gas wells[J]. Petrochemical Industry Technology, 2024, 31(12): 267-269. (in Chinese with English abstract
    [33] WANG S, WANG G W, ZENG L B, et al. New method for logging identification of natural fractures in shale reservoirs: The Fengcheng Formation of the Mahu Sag, China[J]. Marine and Petroleum Geology, 2025, 176: 107346. doi: 10.1016/j.marpetgeo.2025.107346
    [34] AGUILERA R. Analysis of naturally fractured reservoirs from sonic and resistivity logs[J]. Journal of Petroleum Technology, 1974, 26(11): 1233-1238. doi: 10.2118/4398-PA
    [35] 王奇. 综合概率指数法识别裂缝型储层[J]. 中国石油和化工标准与质量, 2012, 32(1): 134.

    WANG Q. Identification of fractured reservoirs by comprehensive probability index method[J]. China Petroleum and Chemical Standard and Quality, 2012, 32(1): 134. (in Chinese with English abstract
    [36] 邹雪峰. 碳酸盐岩裂缝识别及定量评价[D]. 武汉: 长江大学, 2013.

    ZOU X F. The fractured carbonate identification and quantitative evaluation[D]. Wuhan: Yangtze University, 2013. (in Chinese with English abstract
    [37] LYU W Y, ZENG L B, LIU Z Q, et al. Fracture responses of conventional logs in tight-oil sandstones: A case study of the Upper Triassic Yanchang Formation in Southwest Ordos Basin, China[J]. AAPG Bulletin, 2016, 100(9): 1399-1417. doi: 10.1306/04041615129
    [38] 李逸. 测井裂缝识别方法研究及软件开发[D]. 北京: 中国石油大学(北京), 2017.

    LI Y. Methodology of fracture identification and software development based on log data[D]. Beijing: China University of Petroleum (Beijing), 2017. (in Chinese with English abstract
    [39] TOKHMECHI B, MEMARIAN H, NOUBARI H A, et al. A novel approach proposed for fractured zone detection using petrophysical logs[J]. Journal of Geophysics and Engineering, 2009, 6(4): 365-373. doi: 10.1088/1742-2132/6/4/004
    [40] MENG Y J, CHEN H H, LUO Y, et al. Architecture of intraplate strike-slip fault zones in the Yanchang Formation, southern Ordos Basin, China: Characterization and implications for their control on hydrocarbon enrichment[J]. Journal of Structural Geology, 2023, 170: 104851. doi: 10.1016/j.jsg.2023.104851
    [41] RAFIQ A, EATON D W, MCDOUGALL A, et al. Reservoir characterization using microseismic facies analysis integrated with surface seismic attributes[J]. Interpretation, 2016, 4(2): 167-181. doi: 10.1190/INT-2015-0109.1
    [42] 孟玉净, 骆杨, 赵彦超, 等. 泾河油田走滑断裂带长8−长6段致密砂岩构造成岩作用及控储分析[J]. 地质科技通报, 2025, 44(1): 74-89.

    MENG Y J, LUO Y, ZHAO Y C, et al. Structural diagenesis and reservoir control analysis of tight sandstone in the strike-slip fault zones of the Chang 8 to Chang 6 members in the Jinghe oilfield[J]. Bulletin of Geological Science and Technology, 2025, 44(1): 74-89. (in Chinese with English abstract
  • 加载中
图(9)
计量
  • 文章访问数:  42
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-31
  • 录用日期:  2025-06-27
  • 修回日期:  2025-05-28
  • 网络出版日期:  2025-09-22

目录

    /

    返回文章
    返回