留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工智能算法在滑坡监测与预测技术中的研究与应用

程刚 吴勇飞 曹德胜 吴亚熹

程刚,吴勇飞,曹德胜,等. 人工智能算法在滑坡监测与预测技术中的研究与应用[J]. 地质科技通报,2025,44(5):1-15 doi: 10.19509/j.cnki.dzkq.tb20250115
引用本文: 程刚,吴勇飞,曹德胜,等. 人工智能算法在滑坡监测与预测技术中的研究与应用[J]. 地质科技通报,2025,44(5):1-15 doi: 10.19509/j.cnki.dzkq.tb20250115
CHENG Gang,WU Yongfei,CAO Desheng,et al. Research and application of artificial intelligence algorithms in landslide monitoring and prediction technology[J]. Bulletin of Geological Science and Technology,2025,44(5):1-15 doi: 10.19509/j.cnki.dzkq.tb20250115
Citation: CHENG Gang,WU Yongfei,CAO Desheng,et al. Research and application of artificial intelligence algorithms in landslide monitoring and prediction technology[J]. Bulletin of Geological Science and Technology,2025,44(5):1-15 doi: 10.19509/j.cnki.dzkq.tb20250115

人工智能算法在滑坡监测与预测技术中的研究与应用

doi: 10.19509/j.cnki.dzkq.tb20250115
基金项目: 国家自然科学基金项目(42377200);中央引导地方科技发展资金项目(226Z5404G);2025年河北省在读研究生创新能力培养资助项目(CXZZSS2025139)
详细信息
    作者简介:

    程刚:E-mail:chenggang@ncist.edu.cn

    通讯作者:

    E-mail:cds@ncist.edu.cn

Research and application of artificial intelligence algorithms in landslide monitoring and prediction technology

More Information
  • 摘要:

    为减轻滑坡灾害风险,进一步保障区域可持续发展,开展有效的滑坡监测预测研究具有重要的现实意义。通过研究滑坡监测预测中的关键技术与方法,分析各类算法在滑坡监测预测场景中的效率和精度,不断提升滑坡灾害防治水平。在特征提取技术方面,对比分析了SIFT、SURF和ASIFT 3种基于图像特征匹配算法的性能,其中ASIFT在匹配数量、精确率和召回率方面具有显著优势,尤其适用于准确性要求较高的复杂环境场景;在光流分析技术方面,探讨了基于Lucas-Kanade稀疏光流法和Horn-Schunck稠密光流法的应用效果,其中Lucas-Kanade稀疏光流法计算效率高,适合实时应用场景,但存在遗漏重要运动信息风险,Horn-Schunck稠密光流法能够提供全面的光流场信息,适用于环境复杂场景,但存在计算复杂度较高的不足,因而难以用于实时处理;在滑坡易发性预测方面,详细介绍了支持向量机(SVM)、决策树(DT)和随机森林(RF)等经典机器学习方法在滑坡预测中的应用优缺点,并重点研究了基于粒子群优化支持向量机(PSO-SVM)的模型性能,该模型通过优化超参数,显著提高了模型的分类准确度、泛化能力和预测精度。此外,通过引入Faster R-CNN模型,利用其先进的卷积神经网络架构,实现了复杂场景下滑坡事件的自动识别与分类,进一步提升了滑坡监测预警的效率和准确率。研究表明,ASIFT局部特征提取的精确率为0.84,Lucas-Kanade稀疏光流法的跟踪误差为0.12,PSO-SVM模型的均方根误差为0.52,Faster R-CNN模型在滑坡图像自动识别与分类方面的置信度可达0.98,综合性能较其他算法显著提升。综上所述,通过引入人工智能算法,结合多学科技术手段,全方面提升了滑坡监测预测技术的效率和精度,研究成果为滑坡地质灾害防治提供了更有力的技术保障。

     

  • 图 1  2013−2022年中国滑坡数量及其灾害损失

    Figure 1.  The number of landslides and their disaster losses in China from 2013 to 2022

    图 2  基于VOSviewer滑坡监测预测可视化关联分析

    Figure 2.  Visual correlation analysis of landslide monitoring and prediction based on VOSviewer

    图 3  高斯差分金字塔构建流程

    σ. 标准差;k为相邻尺度间的比例因子;k2σk3σ分别为k倍,k2倍和k3σ的高斯核,用于生成同一组内的多尺度高斯图例

    Figure 3.  Formation of Gaussian difference pyramid

    图 4  特征匹配算法实现效果

    Figure 4.  Implementation effect of image feature matching algorithm

    图 5  基于不同原理的光流法

    Figure 5.  Optical flow method based on different principles

    图 6  机器学习算法原理框架

    Figure 6.  Algorithm schematic of machine learning

    图 7  基于机器学习算法的滑坡预测模型流程

    Figure 7.  The process of landslide prediction model based on machine learning algorithms

    图 8  Faster R-CNN算法的实现步骤

    Figure 8.  Implementation principle of Faster R-CNN algorithm

    图 9  ResNet-50结构示意图

    Figure 9.  ResNet-50 structure diagram

    图 10  Faster R-CNN算法

    a. Faster R-CNN实现效果1;b. Faster R-CNN实现效果2

    Figure 10.  Faster R-CNN algorithm

    表  1  SIFT及其改进算法性能对比

    Table  1.   Performance comparison of SIFT and its improved algorithm

    算法名称 匹配数量/个 耗时/s 精确率 召回率
    SIFT 556 0.2786 0.55 0.56
    SURF 130 0.0059 0.58 0.75
    ASIFT 1404 0.2427 0.84 1.00
    下载: 导出CSV

    表  2  Horn-Schunck和Lucas-Kanade算法的对比

    Table  2.   Comparison of Horn-Schunck and Lucas-Kanade

    算法名称 执行时间
    (min:s)
    HyperSparc10α
    执行时间
    期望帧率
    时间/a
    Horn-Schunck 8:00 2:00 12
    Lucas-Kanade 0:23 0:06 7
    下载: 导出CSV

    表  3  Lucas-Kanade和Horn-Schunck性能对比

    Table  3.   Performance comparison between Lucas-Kanade and Horn-Schunck

    算法名称 处理总帧数/个 初始跟踪点数/个 总丢失点数/个 平均跟踪误差
    Lucas-Kanade 799 1197 83 0.13
    Horn-Schunck 799 1472714906 1894 0.12
    下载: 导出CSV

    表  4  机器学习算法的分析比较表

    Table  4.   Analysis and comparison of machine learning algorithms

    算法名称 AUC 准确率 精确率 召回率 F1-score MAE RMSE
    SVM 0.71 0.58 0.72 0.44 0.55 0.41 0.64
    DT 0.57 0.54 0.57 0.55 0.55 0.43 0.65
    RF 0.68 0.65 0.64 0.65 0.64 0.35 0.59
    PSO-SVM 0.71 0.73 0.72 0.72 0.72 0.27 0.52
    下载: 导出CSV
  • [1] 朱鸿鹄. 工程地质界面: 从多元表征到演化机理[J]. 地质科技通报, 2023, 42(1): 1-19.

    ZHU H H. Engineering geological interface: From multivariate characterization to evolution mechanism[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 1-19. (in Chinese with English abstract
    [2] 唐辉明. 重大滑坡预测预报研究进展与展望[J]. 地质科技通报, 2022, 41(6): 1-13.

    TANG H M. Advance and prospects of major landslides prediction and forecasting[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 1-13. (in Chinese with English abstract
    [3] HE R J, ZHANG W G, DOU J, et al. Application of artificial intelligence in three aspects of landslide risk assessment: A comprehensive review[J]. Rock Mechanics Bulletin, 2024, 3(4): 100144. doi: 10.1016/j.rockmb.2024.100144
    [4] 张抒, 唐辉明, 龚文平, 等. 基于物理力学机制的滑坡数值预报模式: 综述、挑战与机遇[J]. 地质科技通报, 2022, 41(6): 14-27.

    ZHANG S, TANG H M, GONG W P, et al. Landslide numerical forecasting mode based on physical-mechanical mechanism: Overviews, challenges and opportunities[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 14-27. (in Chinese with English abstract
    [5] 曹兰柱, 王珍, 王东, 等. 露天矿滑坡预警理论与方法研究[J]. 中国安全科学学报, 2017, 27(3): 163-168.

    CAO L Z, WANG Z, WANG D, et al. Research on theory and method of landslide early warning in open-pit mine[J]. China Safety Science Journal, 2017, 27(3): 163-168. (in Chinese with English abstract
    [6] 程刚, 王振雪, 李刚强, 等. 我国滑坡监测文献计量研究的可视化分析[J]. 中国安全科学学报, 2022, 32(7): 172-179.

    CHENG G, WANG Z X, LI G Q, et al. Visual analysis of bibliometric research on landslide monitoring in China[J]. China Safety Science Journal, 2022, 32(7): 172-179. (in Chinese with English abstract
    [7] 马宁, 李韶凯, 田峰, 等. 滑坡光纤神经感测系统: 技术与应用[J]. 地质科技通报, 2024, 43(6): 26-38.

    MA N, LI S K, TIAN F, et al. Fiber optic nerve sensing system for landslide monitoring: Technology and application[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 26-38. (in Chinese with English abstract
    [8] 吴迪, 梁泰铭, 吴静, 等. 基于MEMS传感器的滑坡监测算法设计与试验[J]. 地质科技通报, 2024, 43(6): 39-50.

    WU D, LIANG T M, WU J, et al. Design and experiment of landslide monitoring algorithm based on MEMS sensor[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 39-50. (in Chinese with English abstract
    [9] 陈斌, 王利, 舒宝, 等. 基于复合分界指标和CEEMD-WT的GNSS滑坡监测坐标时间序列降噪方法[J/OL]. 武汉大学学报(信息科学版), 2024: 1-15.(2024-10-09).

    CHEN B, WANG L, SHU B, et al. GNSS landslide monitoring coordinate time series noise reduction methods based on composite divisional indicator index and CEEMD-WT[J/OL]. Geomatics and Information Science of Wuhan University, 2024: 1-15. (2024-10-09). (in Chinese with English abstract
    [10] 蒲磊, 杨启贵, 程翔, 等. 基于SBAS-InSAR技术的HD库区CYP滑坡形变监测分析[J]. 中国农村水利水电, 2024(11): 240-246.

    PU L, YANG Q G, CHENG X, et al. Analysis of deformation monitoring of CYP landslide in HD reservoir area based on SBAS-InSAR technology[J]. China Rural Water and Hydropower, 2024(11): 240-246. (in Chinese with English abstract
    [11] YANG B B, YIN K L, LACASSE S, et al. Time series analysis and long short-term memory neural network to predict landslide displacement[J]. Landslides, 2019, 16(4): 677-694. doi: 10.1007/s10346-018-01127-x
    [12] 张俊, 殷坤龙, 王佳佳, 等. 基于时间序列与PSO-SVR耦合模型的白水河滑坡位移预测研究[J]. 岩石力学与工程学报, 2015, 34(2): 382-391.

    ZHANG J, YIN K L, WANG J J, et al. Displacement prediction of Baishuihe landslide based on time series and PSO-SVR model[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 382-391. (in Chinese with English abstract
    [13] GE Q, LI J, LACASSE S, et al. Data-augmented landslide displacement prediction using generative adversarial network[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2024, 16(10): 4017-4033. doi: 10.1016/j.jrmge.2024.01.003
    [14] 石化波, 王刚, 曾怀恩. 一种ICEEMDAN-CNN-SVR滑坡位移组合预测模型[J]. 三峡大学学报(自然科学版), 2025, 47(1): 37-43.

    SHI H B, WANG G, ZENG H E. A combined ICEEMDAN-CNN-SVR landslide displacement prediction model[J]. Journal of China Three Gorges University (Natural Sciences), 2025, 47(1): 37-43. (in Chinese with English abstract
    [15] VAN NATIJNE A L, LINDENBERGH R C, BOGAARD T A. Machine learning: New potential for local and regional deep-seated landslide nowcasting[J]. Sensors, 2020, 20(5): 1425. doi: 10.3390/s20051425
    [16] XU Z Y, CHE A L, ZHOU H X. Seismic landslide susceptibility assessment using principal component analysis and support vector machine[J]. Scientific Reports, 2024, 14: 3734. doi: 10.1038/s41598-023-48196-0
    [17] DOU J, YUNUS A P, TIEN B D, et al. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan[J]. Science of the Total Environment, 2019, 662: 332-346. doi: 10.1016/j.scitotenv.2019.01.221
    [18] 黄玲. 基于Django的山体滑坡监测系统设计与实现[D]. 贵阳: 贵州大学, 2022.

    HUANG L. Design and implementation of a landslide monitoring system based on Django[D]. Guiyang: Guizhou University, 2022. (in Chinese with English abstract
    [19] YIN C, LI H R, CHE F, et al. Susceptibility mapping and zoning of highway landslide disasters in China[J]. PLoS One, 2020, 15(9): e0235780. doi: 10.1371/journal.pone.0235780
    [20] WANG Y, FANG Z C, HONG H Y. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China[J]. Science of the Total Environment, 2019, 666: 975-993. doi: 10.1016/j.scitotenv.2019.02.263
    [21] 唐烽顺, 郝利娜, 宋雨洋, 等. 目标检测算法在滑坡识别中的应用[J]. 兰州大学学报(自然科学版), 2024, 60(2): 229-234.

    TANG F S, HAO L N, SONG Y Y, et al. Application of the object detection algorithm in landslide identification[J]. Journal of Lanzhou University (Natural Sciences), 2024, 60(2): 229-234. (in Chinese with English abstract
    [22] HAKIM W L, REZAIE F, NUR A S, et al. Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea[J]. Journal of Environmental Management, 2022, 305: 114367. doi: 10.1016/j.jenvman.2021.114367
    [23] 简小婷, 赵康, 左小清, 等. 基于Faster R-CNN目标检测的滑坡隐患识别: 以福贡县城区为例[J]. 化工矿物与加工, 2022, 51(12): 19-24.

    JIAN X T, ZHAO K, ZUO X Q, et al. Landslides risk identification based on faster R-CNN: A case study in Fugong County[J]. Industrial Minerals & Processing, 2022, 51(12): 19-24. (in Chinese with English abstract
    [24] 贾丰蔓, 康志忠, 于鹏. 影像同名点匹配的SIFT算法与贝叶斯抽样一致性检验[J]. 测绘学报, 2013, 42(6): 877-883.

    JIA F M, KANG Z Z, YU P. A SIFT and Bayes sampling consensus method for image matching[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(6): 877-883. (in Chinese with English abstract
    [25] 赵玉兰, 王兴伟, 黄敏, 等. 基于区域统计直方图与自适应规则的图像匹配算法[J]. 河南理工大学学报(自然科学版), 2017, 36(6): 117-124.

    ZHAO Y L, WANG X W, HUANG M, et al. Research on image matching algorithm based on region statistical histogram coupling adaptive rule[J]. Journal of Henan Polytechnic University (Natural Science), 2017, 36(6): 117-124. (in Chinese with English abstract
    [26] 尚硕, 曹建荣, 汪明, 等. 机器视觉中角点检测算法研究[J]. 计算机测量与控制, 2024, 32(1): 217-225.

    SHANG S, CAO J R, WANG M, et al. Research on corner detection algorithms in machine vision[J]. Computer Measurement & Control, 2024, 32(1): 217-225. (in Chinese with English abstract
    [27] 张慧慧. 抚顺西露天矿大变形滑坡的多源协同监测方法研究[D]. 沈阳: 东北大学, 2019.

    ZHANG H H. Research on the multi-source collaborative monitoring method for the large deformation landslide in Fushun west open-pit mine[D]. Shenyang: Northeastern University, 2019. (in Chinese with English abstract
    [28] LOWE D G. Object recognition from local scale-invariant features[C]//Anon. Proceedings of the Seventh IEEE International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999: 1150-1157.
    [29] BAY H, TUYTELAARS T, VAN GOOL L. SURF: Speeded up robust features[M]//Anon. Computer vision–ECCV 2006. Berlin, Heidelberg: Springer, 2006: 404-417.
    [30] MOREL J M, YU G S. ASIFT: A new framework for fully affine invariant image comparison[J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 438-469. doi: 10.1137/080732730
    [31] LIU H C, HONG T H, HERMAN M, et al. Accuracy vs efficiency trade-offs in optical flow algorithms[J]. Computer Vision and Image Understanding, 1998, 72(3): 271-286. doi: 10.1006/cviu.1998.0675
    [32] LUCAS B D, KANADE T. An iterative image registration technique with an application to stereo vision [C]//Anon. Proceedings of the 7th international joint conference on Artificial intelligence: Volume 2 (IJCAI'81). San Francisco: Morgan Kaufmann Publishers Inc, 1981: 674-679.
    [33] HORN B K P, SCHUNCK B G. Determining optical flow[M]//Anon. Artificial intelligence in perspective. [S. 1.]: The MIT Press, 1994: 81-88.
    [34] 窦杰, 向子林, 许强, 等. 机器学习在滑坡智能防灾减灾中的应用与发展趋势[J]. 地球科学, 2023, 48(5): 1657-1674.

    DOU J, XIANG Z L, XU Q, et al. Application and development trend of machine learning in landslide intelligent disaster prevention and mitigation[J]. Earth Science, 2023, 48(5): 1657-1674. (in Chinese with English abstract
    [35] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. doi: 10.1023/A:1022627411411
    [36] SMOLA A J, SCHÖLKOPF B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3): 199-222. doi: 10.1023/B:STCO.0000035301.49549.88
    [37] ZHOU C, YIN K L, CAO Y, et al. Application of time series analysis and PSO-SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China[J]. Engineering Geology, 2016, 204: 108-120. doi: 10.1016/j.enggeo.2016.02.009
    [38] MIAO F S, WU Y P, XIE Y H, et al. Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model[J]. Landslides, 2018, 15(3): 475-488. doi: 10.1007/s10346-017-0883-y
    [39] ZHAO J J, LI D Y, ZHOU J, et al. Performance evaluation of rock fragmentation prediction based on RF-BOA, AdaBoost-BOA, GBoost-BOA, and ERT-BOA hybrid models[J]. Deep Underground Science and Engineering, 2025, 4(1): 3-17. doi: 10.1002/dug2.12089
    [40] VAN DEN BERGH F, ENGELBRECHT A P. A study of particle swarm optimization particle trajectories[J]. Information Sciences, 2006, 176(8): 937-971. doi: 10.1016/j.ins.2005.02.003
    [41] SUN C M, XU R J, WANG C, et al. Coal rock image recognition method based on improved CLBP and receptive field theory[J]. Deep Underground Science and Engineering, 2022, 1(2): 165-173. doi: 10.1002/dug2.12023
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  72
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-11
  • 录用日期:  2025-06-12
  • 修回日期:  2025-06-10
  • 网络出版日期:  2025-06-24

目录

    /

    返回文章
    返回