Application of MT and WFEM two-dimensional joint inversion in Datong geothermal area, Shanxi Province
-
摘要:
地热能凭借其稳定性、经济性等优势已成为新型清洁能源体系构建的关键方向。电磁法作为解析地热系统电性结构的核心地球物理手段,其方法体系呈现显著互补特征:大地电磁法(magnetotelluric,简称MT)利用天然交变电磁场,具有探测深度大、对深部低阻异常体灵敏等特点,但极易受到电磁环境噪声的影响;广域电磁法(wide-field electromagnetic method,简称WFEM)采用人工场源,抗干扰性能强、对浅部异常体及细小断裂分辨率较高。为充分发挥MT和WFEM的优势互补效应,采用二维联合反演方法,探讨了MT与WFEM联合反演在地热勘探过程中的可行性和有效性。理论模型合成数据测试表明,相比于单独反演结果,MT与WFEM二维联合反演能够更为清晰地刻画地热系统的盖层及热储层分布特征。最后,对山西大同地热区实测MT及WFEM数据分别单独反演和联合反演,并进行了对比分析。研究结果显示联合反演结果要显著优于MT或WFEM单独反演结果,有助于圈定出地热系统的重要组成部分。根据联合反演所得的电阻率分布结构,结合测区地质及其他资料,推断出了该地区地热系统的概念模型。
Abstract:Objective Geothermal energy, owing to its stability and economic advantages, has become a crucial direction in the construction of new clean energy systems.
Methods Electromagnetic methods are core geophysical techniques for resolving the electrical structure of geothermal systems and exhibit distinct complementary features. The magnetotelluric (MT) method uses natural alternating electromagnetic fields with the advantages of high detection depth and sensitivity to deep low resistance bodies, but it is susceptible to the influence of electromagnetic environmental noise. Wide-field electromagnetic method(WFEM) utilizes artificial field sources, exhibiting strong anti-interference capabilities and showing higher resolution for shallow anomalous bodies and small fractures. This study explores the complementarity and effectiveness of MT and WFEM in geothermal exploration through a two-dimensional joint inversion method.
Results Theoretical models and synthetic data tests have shown that two-dimensional joint inversion combines the respective advantages of MT and WFEM, and can more clearly characterize the cap rock and thermal reservoir structure of geothermal systems. This paper conducted a joint inversion study on the measured data of MT and WFEM in a geothermal area in Datong, Shanxi, China. The results showed that the resistivity distribution obtained from the joint inversion clearly characterized shallow fault channels and deep thermal reservoirs.
Conclusion Based on the resistivity structure model obtained from joint inversion and other geological data, a conceptual model of the geothermal system in the region was constructued, providing a reference basis for the precise exploration of geothermal resources in the future.
-
-
[1] 李德,郭妙连. 中国地热资源现状与未来发展趋势[J]. 化工设计通讯,2021,47(5):149-150.LI D,GUO M L. Current situation and future development trend of geothermal resources in China[J]. Chemical Engineering Design Communications,2021,47(5):149-150. (in Chinese with English abstract [2] 毕玉荣. 地热资源开发应用现状及前景综述[J]. 石油石化节能,2011,1(10):7-10.BI Y R. Application and prospect of geothermal resource development[J]. Energy Conservation in Petroleum & Petrochemical Industry,2011,1(10):7-10. (in Chinese with English abstract [3] 王贵玲,刘彦广,朱喜,等. 中国地热资源现状及发展趋势[J]. 地学前缘,2020,27(1):1-9.WANG G L,LIU Y G,ZHU X,et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers,2020,27(1):1-9. (in Chinese with English abstract [4] 李文,孔祥军,袁利娟,等. 中国地热资源概况及开发利用建议[J]. 中国矿业,2020,29(增刊1):22-26.LI W,KONG X J,YUAN L J,et al. General situation and suggestions of development and utilization of geothermal resources in China[J]. China Mining Magazine,2020,29(S1):22-26. (in Chinese with English abstract [5] 吴佳文,胡祥云,黄国疏,等. 地热资源电磁法勘探现状及展望[J]. 地球学报,2023,44(1):191-199.WU J W,HU X Y,HUANG G S,et al. Status and prospects of electromagnetic method used in geothermal resources exploration[J]. Acta Geoscientica Sinica,2023,44(1):191-199. (in Chinese with English abstract [6] 吴强. 地球物理方法在地热勘探中的应用研究[D]. 成都:成都理工大学,2018.WU Q. Application of geophysical methods in geothermal exploration[D]. Chengdu:Chengdu University of Technology,2018. (in Chinese with English abstract [7] ATHENS N D,CAERS J K. Gravity inversion for geothermal exploration with uncertainty quantification[J]. Geothermics,2021,97:102230. doi: 10.1016/j.geothermics.2021.102230 [8] 陈昌昕,严加永,周文月,等. 地热地球物理勘探现状与展望[J]. 地球物理学进展,2020,35(4):1223-1231.CHEN C X,YAN J Y,ZHOU W Y,et al. Status and prospects of geophysical method used in geothermal exploration[J]. Progress in Geophysics,2020,35(4):1223-1231. (in Chinese with English abstract [9] 张文科,徐玺萍,李聪. CSAMT及MT在寻找城市地热资源中的应用[J]. 青海大学学报,2019,37(4):77-82.ZHANG W K,XU X P,LI C. The application of CSAMT and MT in searching for urban geothermal resources[J]. Journal of Qinghai University,2019,37(4):77-82. (in Chinese with English abstract [10] MUÑOZ G. Exploring for geothermal resources with electromagnetic methods[J]. Surveys in Geophysics,2014,35(1):101-122. doi: 10.1007/s10712-013-9236-0 [11] ARCHIE G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Transactions of the AIME,1942,146(1):54-62. doi: 10.2118/942054-G [12] BERKTOLD A. Electromagnetic studies in geothermal regions[J]. Geophysical Surveys,1983,6(1):173-200. [13] FLÓVENZ Ó G,GEORGSSON L S,ÁRNASON K. Resistivity structure of the upper crust in Iceland[J]. Journal of Geophysical Research (Solid Earth),1985,90(12):10136-10150. [14] ANDERSON E,JOHNSTONE R,HARVEY C,et al. Understanding the resistivities observed in geothermal systems[C]//Anon. Proceedings of the 2000 World Geothermal Conference. [S. 1. ]:[s. n. ],2020. [15] 孙海川. CSAMT和MT在兰州新区地热勘查中的应用探讨[J]. 地下水,2020,42(1):24-27.SUN H C. Application of CSAMT and MT in geothermal exploration in Lanzhou New District[J]. Ground Water,2020,42(1):24-27. (in Chinese with English abstract [16] 朱悦,彭荣华,胡祥云,等. 基于变维度贝叶斯反演的地热黏土盖层音频大地电磁探测能力研究[J]. 地质科技通报,2024,43(3):341-350.ZHU Y,PENG R H,HU X Y,et al. Research on audio-frequency magnetotelluric detection capability of geothermal clay cap based on trans-dimensional Bayesian inversion[J]. Bulletin of Geological Science and Technology,2024,43(3):341-350. (in Chinese with English abstract [17] 王方,熊杰,田慧潇,等. 基于深度学习的大地电磁二维反演方法[J]. 地质科技通报,2024,43(2):344-354.WANG F,XIONG J,TIAN H X,et al. Two-dimensional magnetotelluric inversion method based on deep learning[J]. Bulletin of Geological Science and Technology,2024,43(2):344-354. (in Chinese with English abstract [18] CHERKOSE B A,MIZUNAGA H. Resistivity imaging of Aluto-Langano geothermal field using 3D magnetotelluric inversion[J]. Journal of African Earth Sciences,2018,139:307-318. doi: 10.1016/j.jafrearsci.2017.12.017 [19] ARAYA VARGAS J,MEQBEL N M,RITTER O,et al. Fluid distribution in the central Andes subduction zone imaged with magnetotellurics[J]. Journal of Geophysical Research (Solid Earth),2019,124(4):4017-4034. doi: 10.1029/2018JB016933 [20] OMOLLO P,NISHIJIMA J,FUJIMITSU Y,et al. Resistivity structural imaging of the Olkaria Domes geothermal field in Kenya using 2D and 3D MT data inversion[J]. Geothermics,2022,103:102414. doi: 10.1016/j.geothermics.2022.102414 [21] AHUMADA M F,GUEVARA L,FAVETTO A,et al. Electrical resistivity structure in the Tocomar geothermal system obtained from 3D inversion of audio-magnetotelluric data (central Puna,NW Argentina)[J]. Geothermics,2022,104:102436. doi: 10.1016/j.geothermics.2022.102436 [22] MARYADI M,MIZUNAGA H. Subsurface temperature estimation in a geothermal field based on audio-frequency magnetotelluric data[J]. Exploration Geophysics,2022,53(3):275-288. doi: 10.1080/08123985.2021.1949945 [23] MEJU M A. Geoelectromagnetic exploration for natural resources:Models,case studies and challenges[J]. Surveys in Geophysics,2002,23(2):133-206. [24] 何继善. 广域电磁法和伪随机信号电法[M]. 北京:高等教育出版社,2010.HE J S. Wide-area electromagnetic method and pseudo-random signal electrical method[M]. Beijing:Higher Education Press,2010. (in Chinese) [25] 危志峰,陈后扬,吴西全. 广域电磁法在宜春某地地热勘查中的应用[J]. 物探与化探,2020,44(5):1009-1018.WEI Z F,CHEN H Y,WU X Q. The application of wide field electromagnetic method to geothermal exploration in Yichun[J]. Geophysical and Geochemical Exploration,2020,44(5):1009-1018. (in Chinese with English abstract [26] 古志文,田红军,王安平,等. 广域电磁法在川南地区温泉勘查方面的应用[J]. 四川地质学报,2021,41(4):662-666.GU Z W,TIAN H J,WANG A P,et al. The application of wide-area electromagnetic method to the hot spring exploration in South Sichuan[J]. Acta Geologica Sichuan,2021,41(4):662-666. (in Chinese with English abstract [27] 邵炳松,阮传侠,赵苏民,等. 广域电磁法在郑州地区深部地热资源勘查中的应用[J]. 地质与勘探,2023,59(2):316-327.SHAO B S,RUAN C X,ZHAO S M,et al. The application of wide field electromagnetic method to deep geothermal resources exploration in Zhengzhou area[J]. Geology and Exploration,2023,59(2):316-327. (in Chinese with English abstract [28] 崔健,邓荻,张海东,等. 广域电磁法在苏北盆地厚覆盖区地热勘查中的应用[J]. 地质与资源,2023,32(1):70-78.CUI J,DENG D,ZHANG H D,et al. Application of wide field electromagnetic method in geothermal exploration of thick covered area in northern Jiangsu Basin[J]. Geology and Resources,2023,32(1):70-78. (in Chinese with English abstract [29] WU G J,HU X Y,HUO G P,et al. Geophysical exploration for geothermal resources:An application of MT and CSAMT in Jiangxia,Wuhan,China[J]. Journal of Earth Science,2012,23(5):757-767. doi: 10.1007/s12583-012-0282-1 [30] BRETAUDEAU F,DUBOIS F,BISSAVETSY KASSA S G,et al. Time-lapse resistivity imaging:CSEM-data 3D double-difference inversion and application to the reykjanes geothermal field[J]. Geophysical Journal International,2021,226(3):1764-1782. doi: 10.1093/gji/ggab172 [31] ZHAO G,LIU Y G,HU L H,et al. Inversion of the temperature and depth of geothermal reservoirs using controlled source audio frequency magnetotellurics and hydrogeochemical method[J]. Frontiers in Earth Science,2022,10:858748. doi: 10.3389/feart.2022.858748 [32] ZERILLI A,LABRUZZO T,BUONORA M P,et al. Joint inversion of marine CSEM and MT data using a "structure"-based approach[C]//Anon. SEG Technical Program Expanded Abstracts 2011. Tulsa,Oklahoma,United States:Society of Exploration Geophysicists,2011:604-608. [33] MILLER R V,MEJU M A,SALEH A S,et al. Structure-guided 3D joint inversion of CSEM and MT data from a fold-thrust belt[C]//Anon. SEG Technical Program Expanded Abstracts 2019. Tulsa,Oklahoma,United States:Society of Exploration Geophysicists,2019:1115-1119. [34] 彭荣华,胡祥云,韩波. 基于高斯牛顿法的频率域可控源电磁三维反演研究[J]. 地球物理学报,2016,59(9):3470-3481.PENG R H,HU X Y,HAN B. 3D inversion of frequency-domain CSEM data based on Gauss-Newton optimization[J]. Chinese Journal of Geophysics,2016,59(9):3470-3481. (in Chinese with English abstract [35] LIAO W Y,PENG R H,HU X Y,et al. 3D joint inversion of MT and CSEM data for imaging a high-temperature geothermal system in Yanggao region,Shanxi Province,China[J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60:5925813. [36] 岑敏,董树文,施炜,等. 大同盆地形成机制的构造研究[J]. 地质论评,2015,61(6):1235-1247.CEN M,DONG S W,SHI W,et al. Structural analysis on the formation mechanism of Datong Basin[J]. Geological Review,2015,61(6):1235-1247. (in Chinese with English abstract [37] 周文龙. 大同盆地东北部地热区电性结构探测研究[D]. 武汉:中国地质大学(武汉),2021.ZHOU W L. Electrical structure of geothermal area in northeast of Datong Basin[D]. Wuhan:China University of Geosciences (Wuhan),2021. (in Chinese with English abstract [38] 刘德民,韦梅华,孙明行,等. 干热岩控热构造系统厘定与类型划分[J]. 地球科学,2022,47(10):3723-3735.LIU D M,WEI M H,SUN M H,et al. Classification and determination of thermal control structural system of hot dry rock[J]. Earth Science,2022,47(10):3723-3735. (in Chinese with English abstract [39] 潘良云,孟令箭,孙福利,等. 山西大同盆地北部地热地质特征及资源潜力[J]. 中国地质,2023,50(6):1632-1645. doi: 10.12029/gc20220304001PAN L Y,MENG L J,SUN F L,et al. Geothermal geological characteristics and resource potential in the north of Datong Basin,Shanxi Province[J]. Geology in China,2023,50(6):1632-1645. (in Chinese with English abstract doi: 10.12029/gc20220304001 [40] ZHANG H Q,HUANG Q H,ZHAO G Z,et al. Three-dimensional conductivity model of crust and uppermost mantle at the northern Trans North China Orogen:Evidence for a mantle source of Datong volcanoes[J]. Earth and Planetary Science Letters,2016,453:182-192. doi: 10.1016/j.jpgl.2016.08.025 -
下载:
