留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海陆过渡相页岩层系总有机碳含量地震定量预测:以鄂尔多斯盆地大宁−吉县区块为例

吴勇 王旭旭 周路 李树新 李永洲 吴丰

吴勇,王旭旭,周路,等. 海陆过渡相页岩层系总有机碳含量地震定量预测:以鄂尔多斯盆地大宁−吉县区块为例[J]. 地质科技通报,2025,44(4):354-367 doi: 10.19509/j.cnki.dzkq.tb20250019
引用本文: 吴勇,王旭旭,周路,等. 海陆过渡相页岩层系总有机碳含量地震定量预测:以鄂尔多斯盆地大宁−吉县区块为例[J]. 地质科技通报,2025,44(4):354-367 doi: 10.19509/j.cnki.dzkq.tb20250019
WU Yong,WANG Xuxu,ZHOU Lu,et al. TOC content seismic quantitative prediction of marine-continental transitional shale stratum: Taking the Daning-Jixian Block in the Ordos Basin as an example[J]. Bulletin of Geological Science and Technology,2025,44(4):354-367 doi: 10.19509/j.cnki.dzkq.tb20250019
Citation: WU Yong,WANG Xuxu,ZHOU Lu,et al. TOC content seismic quantitative prediction of marine-continental transitional shale stratum: Taking the Daning-Jixian Block in the Ordos Basin as an example[J]. Bulletin of Geological Science and Technology,2025,44(4):354-367 doi: 10.19509/j.cnki.dzkq.tb20250019

海陆过渡相页岩层系总有机碳含量地震定量预测:以鄂尔多斯盆地大宁−吉县区块为例

doi: 10.19509/j.cnki.dzkq.tb20250019
基金项目: 中国石油-西南石油大学创新联合体科技合作项目(2020CX030103)
详细信息
    通讯作者:

    E-mail:wycan_112@126.com

  • 中图分类号: P631.8;P618.13

TOC content seismic quantitative prediction of marine-continental transitional shale stratum: Taking the Daning-Jixian Block in the Ordos Basin as an example

More Information
  • 摘要:

    海陆过渡相页岩气作为非常规油气的重要接替资源,明确其总有机碳(total organic carbon,简称TOC)含量的空间分布对页岩气“甜点”的预测具有重要意义。由于海陆过渡相页岩w(TOC)与岩石弹性参数无有效表征关系,导致海相页岩气评价中常用的基于敏感弹性参数预测w(TOC)的方法难以适用。针对这一难题,在测井参数拟合法实现w(TOC)测井评价的基础上,引入基于相控的波形指示模拟地震预测方法实现了海陆过渡相页岩地层w(TOC)的空间预测。结果表明,海陆过渡相页岩具有单层厚度薄、有机质含量高、纵向分布不规律的特点;基于储层特征参数的井震高频模拟有效预测了海陆过渡相页岩w(TOC),反演结果纵、横向分辨率较高,与测井参数建模解释的w(TOC)曲线吻合度高,符合率达84.4%,能够反映页岩储层w(TOC)空间变化规律。本研究有效解决了海陆过渡相页岩气“甜点”关键评价参数(w(TOC))无法利用岩石弹性参数定量预测的难题,为海陆过渡相页岩气勘探开发提供了技术支撑。

     

  • 图 1  研究区位置(a,b)及地层柱状示意图(c)(据文献[20]修改)

    Figure 1.  Location of the study area (a,b) and schematic diagram of stratigraphic columns (c)

    图 2  海相与海陆过渡相页岩含气量与w(TOC)相关性(a)和研究区山23亚段页岩样品w(TOC)分布直方图(b)

    Figure 2.  Correlation between gas content and TOC content in marine shales and transitional shales (a), histogram of TOC content distribution in transitional shale samples of Shan23 sub-member within the study area (b)

    图 3  基于∆logR方法识别页岩有机质含量示意图

    GR. 自然伽马;CAL. 井径;AC. 声波时差;RT. 电阻率;w实测(TOC). 总有机碳质量分数实测值;1 in=0.0254 m;下同

    Figure 3.  Schematic diagram for identifying shale organic matter content based on the ΔlogR method

    图 4  研究区海陆过渡相页岩层系岩心TOC与测井参数相关分析图

    a~h. 非煤层段; i. 煤层段。DEM. 密度; Vp/Vs. 纵、横波速度比;Vp. 纵波速度;Vs. 横波速度;DTS. 横波时差;CNL. 补偿中子;下同

    Figure 4.  Correlation analysis of core TOC and logging parameters in transitional shale strata of the study area

    图 5  研究区(a)及邻区(b)山23亚段TOC测井计算结果

    Figure 5.  Results of TOC logging calculation in the study area (a) and adjacent regions (b) of the Shan23 sub-member

    图 6  研究区山23亚段w(TOC)与弹性参数交会图(v. 泊松比;E. 杨氏模量)

    Figure 6.  Cross-plot of TOC content versus elastic parameters for the Shan23 sub-member

    图 7  地震波形指示模拟流程图(a)和有效样本分析示意图(b)

    Figure 7.  Schematic workflow of waveform indication simulation (a) and analysis of effective samples (b)

    图 8  研究区波形指示模拟最佳截止频率质控图

    Figure 8.  Quality control chart of the optimal cut-off frequency for waveform indication simulation in the study area

    图 9  研究区山23亚段TOC预测剖面图(井旁红色曲线为测井解释的w(TOC)曲线;剖面位置见图11

    Figure 9.  TOC prediction profile of Shan23 sub-member in the study area

    图 10  验证井A5、A11井TOC预测剖面(井旁黑色曲线为测井解释的w(TOC)曲线)

    Figure 10.  TOC prediction profiles for the verification wells A5 and A11

    图 11  研究区山23亚段w(TOC)预测平面分布图

    Figure 11.  Planar distribution map of predicted TOC for the Shan23 sub-member in the study area

    表  1  常用地震反演方法的优缺点对比[36-41]

    Table  1.   Comparison of the advantages and disadvantages of common seismic inversion methods

    反演方法 优势 局限性
    稀疏脉冲反演 可得到绝对波阻抗;反演快速高效 ①分辨率受限于地震资料分辨率,分辨率低;
    ②标定结果和子波等因素影响较大,多解性强;
    ③不适用于薄层预测。
    基于模型的叠后反演 纵向分辨率较高,与测井信息吻合度较高 受模型控制,横向分辨率低,不适用于储层横向变化快的地质条件。
    非线性反演(神经网络、支持向量机…) 反演结果精度往往较高,时效性好 ①解的非唯一性问题更加严重;
    ②缺乏地球物理理论及地质规律的支撑;
    ③非线性反演算法自身仍存在一定的缺陷,且计算效率普遍较低。
    地质统计学反演 ①整合高分辨率的测井信息和低分辨率的三维地震数据;
    ②增加了确定性地震反演垂向的细节信息;
    ③得到符合地质特征的油藏属性模型;
    ④产生具有细节信息的岩石物理模型准备进行后续的油藏模拟。
    ①反演结果受初始模型约束和控制,多解性强;
    ②高频成分来自于随机模拟,横向分辨率低,且没有相控思想;
    ③井数少时,随机性强,与地质规律差异较大。
    波形指示反演/
    波形指示模拟
    ①反演结果具有较高的分辨率和反演精度;
    ②地震波形驱动测井曲线实现高分辨率反演,具有相控思想,不受井数量和井位分布影响,反演结果符合地质规律;
    ③不仅可实现高分辨率波阻抗反演,同时可实现自然伽马、孔隙度等非阻抗储层参数的相控高分辨率模拟。
    ①受井资料处理结果的影响;
    ②易受井−震标定结果的影响;
    ③反演精度与层位解释精度密切相关。
    下载: 导出CSV
  • [1] 邹才能,赵群,董大忠,等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学,2017,28(12):1781-1796.

    ZOU C N,ZHAO Q,DONG D Z,et al. Geological characteristics,main challenges and future prospect of shale gas[J]. Natural Gas Geoscience,2017,28(12):1781-1796. (in Chinese with English abstract
    [2] 郭旭升,胡东风,刘若冰,等. 四川盆地二叠系海陆过渡相页岩气地质条件及勘探潜力[J]. 天然气工业,2018,38(10):11-18.

    GUO X S,HU D F,LIU R B,et al. Geological conditions and exploration potential of Permian marine-continent transitional facies shale gas in the Sichuan Basin[J]. Natural Gas Industry,2018,38(10):11-18. (in Chinese with English abstract
    [3] KUANG L C,DONG D Z,HE W Y,et al. Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos Basin,NW China[J]. Petroleum Exploration and Development,2020,47(3):471-482. doi: 10.1016/S1876-3804(20)60066-0
    [4] 董大忠,邱振,张磊夫,等. 海陆过渡相页岩气层系沉积研究进展与页岩气新发现[J]. 沉积学报,2021,39(1):29-45.

    DONG D Z,QIU Z,ZHANG L F,et al. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J]. Acta Sedimentologica Sinica,2021,39(1):29-45. (in Chinese with English abstract
    [5] 邹才能,赵群,丛连铸,等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业,2021,41(1):1-14.

    ZOU C N,ZHAO Q,CONG L Z,et al. Development progress,potential and prospect of shale gas in China[J]. Natural Gas Industry,2021,41(1):1-14. (in Chinese with English abstract
    [6] 陈勇. 川东南焦石坝及丁山地区五峰-龙马溪组页岩气储层特征及“甜点”预测技术研究[D]. 成都:成都理工大学,2016.

    CHEN Y. Research on reservoir characteristics and "sweet spot" prediction technology of shale gas of Wufeng-Longmaxi Formation in Jiaoshiba and Dingshan area[D]. Chengdu:Chengdu University of Technology,2016. (in Chinese with English abstract
    [7] 侯华星,欧阳永林,曾庆才,等. 川南地区龙马溪组页岩气“甜点区” 地震预测技术[J]. 煤炭科学技术,2017,45(5):154-163.

    HOU H X,OUYANG Y L,ZENG Q C,et al. Seismic prediction technology of shale gas "sweet spots" in Longmaxi Formation of South Sichuan area[J]. Coal Science and Technology,2017,45(5):154-163. (in Chinese with English abstract
    [8] 李金磊. 海相页岩气甜点地震预测及评价技术研究[D]. 成都:西南石油大学,2019.

    LI J L. Study on seismic prediction and evaluation technology of marine shale gas sweet-spot[D]. Chengdu:Southwest Petroleum University,2019. (in Chinese with English abstract
    [9] 邓宇,曾庆才,陈胜,等. 四川盆地威远地区五峰组-龙马溪组页岩TOC含量地震定量预测方法及应用[J]. 天然气地球科学,2019,30(3):414-422.

    DENG Y,ZENG Q C,CHEN S,et al. Seismic quantitative prediction method and application of TOC content in Wufeng-Longmaxi Formation shale reservoirs in Weiyuan area,Sichuan Basin[J]. Natural Gas Geoscience,2019,30(3):414-422. (in Chinese with English abstract
    [10] GUO Z Q,LV X Y,LIU C,et al. Prediction of organic richness in shale gas reservoirs using a novel organic-inorganic decoupling seismic inversion method[J]. Gas Science and Engineering,2023,110:204864. doi: 10.1016/j.jgsce.2022.204864
    [11] 陈胜,赵文智,欧阳永林,等. 利用地球物理综合预测方法识别页岩气储层甜点:以四川盆地长宁区块下志留统龙马溪组为例[J]. 天然气工业,2017,37(5):20-30. doi: 10.3787/j.issn.1000-0976.2017.05.003

    CHEN S,ZHAO W Z,OUYANG Y L,et al. Comprehensive prediction of shale gas sweet spots based on geophysical properties:A case study of the Lower Silurian Longmaxi Fm in Changning Block,Sichuan Basin[J]. Natural Gas Industry,2017,37(5):20-30. (in Chinese with English abstract doi: 10.3787/j.issn.1000-0976.2017.05.003
    [12] ZENG Q C,CHEN S,HE P,et al. Quantitative prediction of shale gas sweet spots based on seismic data in Lower Silurian Longmaxi Formation,Weiyuan area,Sichuan Basin,SW China[J]. Petroleum Exploration and Development,2018,45(3):422-430. doi: 10.1016/S1876-3804(18)30047-8
    [13] 王梦,康昆,龙浩,等. 页岩气储层总有机碳含量地震定量预测方法及其在四川盆地LZ区块的应用[J]. 大庆石油地质与开发,2021,40(3):130-136.

    WANG M,KANG K,LONG H,et al. TOC seismic quantitative prediction method for the shale gas reservoirs and its application in Block LZ of Sichuan Basin[J]. Petroleum Geology & Oilfield Development in Daqing,2021,40(3):130-136. (in Chinese with English abstract
    [14] GU Y F,LI X T,QI L,et al. Sedimentology and geochemistry of the Lower Permian Shanxi Formation Shan 23 submember transitional shale,eastern Ordos Basin,North China[J]. Frontiers in Earth Science,2022,10:859845. doi: 10.3389/feart.2022.859845
    [15] 吴鹏,高丽军,李勇,等. 海陆过渡相岩性频繁互层型页岩气潜力评价方法:以鄂尔多斯盆地临兴区块下二叠统山西组为例[J]. 天然气工业,2022,42(2):28-39.

    WU P,GAO L J,LI Y,et al. An evaluation method for shale gas potential of marine-continent transitional facies with frequent interbedded lithology:A case study on the Lower Permian Shanxi Formation in Linxing Block of the Ordos Basin[J]. Natural Gas Industry,2022,42(2):28-39. (in Chinese with English abstract
    [16] WANG X X,ZHOU L,WU Y,et al. Restoration of palaeogeomorphology and its petroleum-geological significance:Transitional-facies deposition during the Early Permian in the southeastern Ordos Basin,North China[J]. Geoenergy Science and Engineering,2023,221:111310. doi: 10.1016/j.petrol.2022.111310
    [17] 李梦蕾,张超谟,石文睿,等. 提高煤系页岩储层TOC计算精度的改进方法[J]. 石油物探,2024,63(4):817-825. doi: 10.12431/issn.1000-1441.2024.63.04.010

    LI M L,ZHANG C M,SHI W R,et al. A method to improve the accuracy of TOC calculation for coal-measure shale reservoirs[J]. Geophysical Prospecting for Petroleum,2024,63(4):817-825. (in Chinese with English abstract doi: 10.12431/issn.1000-1441.2024.63.04.010
    [18] 罗力元,李勇,李树新,等. 鄂尔多斯盆地东缘大吉地区山23亚段海陆过渡相页岩气富集控制因素[J]. 天然气地球科学,2025,36(3):554-566.

    LUO L Y,LI Y,LI S X,et al. Controlling factors of marine and continental transitional shale gas enrichment in Shan23 sub-member,Daji area,eastern margin of Ordos Basin[J]. Natural Gas Geoscience,2025,36(3):554-566. (in Chinese with English abstract
    [19] ZHAO B S,LI R X,QIN X L,et al. Geochemical characteristics and mechanism of organic matter accumulation of marine-continental transitional shale of the Lower Permian Shanxi Formation,southeastern Ordos Basin,North China[J]. Journal of Petroleum Science and Engineering,2021,205:108815. doi: 10.1016/j.petrol.2021.108815
    [20] 赵龙梅,文桂华,李星涛,等. 鄂尔多斯盆地大宁-吉县区块山西组23亚段致密砂岩气储层“甜点区” 评价[J]. 天然气工业,2018,38(增刊1):5-10.

    ZHAO L M,WEN G H,LI X T,et al. Evaluation of the "sweet spot" of tight sandstone gas reservoir in sub-member 23 of Shanxi Formation in Daning-Jixian Block,Ordos Basin[J]. Natural Gas Industry,2018,38(S1):5-10. (in Chinese with English abstract
    [21] 鲁静,邵龙义,孙斌,等. 鄂尔多斯盆地东缘石炭-二叠纪煤系层序-古地理与聚煤作用[J]. 煤炭学报,2012,37(5):747-754.

    LU J,SHAO L Y,SUN B,et al. Sequence-paleogeography and coal accumulation of Carboniferous-Permian coal measures in the eastern Ordos Basin[J]. Journal of China Coal Society,2012,37(5):747-754. (in Chinese with English abstract
    [22] 蔡光银,蒋裕强,李星涛,等. 海陆过渡相与海相富有机质页岩储层特征差异[J]. 沉积学报,2022,40(4):1030-1042.

    CAI G Y,JIANG Y Q,LI X T,et al. Comparison of characteristics of transitional and marine organic-rich shale reservoirs[J]. Acta Sedimentologica Sinica,2022,40(4):1030-1042. (in Chinese with English abstract
    [23] HE Q B,CHEN S J,LI S X,et al. Organic geochemical characteristics and hydrocarbon generation mechanism of marine-continental transitional organic-rich shale:A case study from the Shanxi Formation in the eastern margin of the Ordos Basin[J]. Journal of Petroleum Science and Engineering,2022,219:111116. doi: 10.1016/j.petrol.2022.111116
    [24] 蒋旭东,曹俊兴,逯宇佳,等. 川东南地区海相页岩气层TOC含量多参数融合预测[J]. 成都理工大学学报(自然科学版),2018,45(1):121-128.

    JIANG X D,CAO J X,LU Y J,et al. A comprehensive prediction of multiple parameters of TOC in marine gas shale,southeastern Sichuan Basin,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2018,45(1):121-128. (in Chinese with English abstract
    [25] ZHANG H Y,WU W S,WU H. TOC prediction using a gradient boosting decision tree method:A case study of shale reservoirs in Qinshui Basin[J]. Geoenergy Science and Engineering,2023,221:111271. doi: 10.1016/j.petrol.2022.111271
    [26] SHALABY M R,JUMAT N,LAI D,et al. Integrated TOC prediction and source rock characterization using machine learning,well logs and geochemical analysis:Case study from the Jurassic source rocks in Shams field,NW Desert,Egypt[J]. Journal of Petroleum Science and Engineering,2019,176:369-380. doi: 10.1016/j.petrol.2019.01.055
    [27] PASSEY Q R,CREANEY S,KULLA J B,et al. A practical model for organic richness from porosity and resistivity logs[J]. AAPG Bulletin,1990,74(12):1777-1794.
    [28] 李亚男. 页岩气储层测井评价及其应用:以川南地区为例[D]. 北京:中国矿业大学(北京),2014.

    LI Y N. Research on logging evaluation method of shale gas reservoir and its application:Take south of Sichuan area for example[D]. Beijing:China University of Mining & Technology(Beijing),2014. (in Chinese with English abstract
    [29] OLDENBURG T B P,BROWN M,BENNETT B,et al. The impact of thermal maturity level on the composition of crude oils,assessed using ultra-high resolution mass spectrometry[J]. Organic Geochemistry,2014,75:151-168. doi: 10.1016/j.orggeochem.2014.07.002
    [30] ABARGHANI A,GENTZIS T,LIU B,et al. Preliminary investigation of the effects of thermal maturity on redox-sensitive trace metal concentration in the Bakken source rock,North Dakota,USA[J]. ACS Omega,2020,5(13):7135-7148. doi: 10.1021/acsomega.9b03467
    [31] 张海波. 昭通地区五峰组-龙马溪组泥岩有机碳含量测井评价及软件实现[D]. 北京:中国地质大学(北京),2016.

    ZHANG H B. The fast logging evaluation method for measuring TOC in the mudstone of Wufeng-Longmaxi Formation in Zhaotong region and a newly developed software of the method[D]. Beijing:China University of Geosciences(Beijing),2016. (in Chinese with English abstract
    [32] LAI J,ZHAO F,XIA Z L,et al. Well log prediction of total organic carbon:A comprehensive review[J]. Earth-Science Reviews,2024,258:104913. doi: 10.1016/j.earscirev.2024.104913
    [33] 史彪,吴丰,李树新,等. 海陆过渡相优质页岩测井识别:以鄂尔多斯盆地大宁−吉县地区山2段为例[J]. 地质科技通报,2023,42(2):115-126.

    SHI B,WU F,LI S X,et al. Logging identification of high-quality shale of the marine-continent transitional facies:An example of the Shan 2 Member of the Daning-Jixian area in the Ordos Basin[J]. Bulletin of Geological Science and Technology,2023,42(2):115-126. (in Chinese with English abstract
    [34] 何骁,吴建发,雍锐,等. 四川盆地长宁-威远区块海相页岩气田成藏条件及勘探开发关键技术[J]. 石油学报,2021,42(2):259-272.

    HE X,WU J F,YONG R,et al. Accumulation conditions and key exploration and development technologies of marine shale gas field in Changning-Weiyuan Block,Sichuan Basin[J]. Acta Petrolei Sinica,2021,42(2):259-272. (in Chinese with English abstract
    [35] 陈轶林,孔令明,梁浩然. 下古生界海相页岩TOC测井预测模型优选及应用:以川南长宁地区为例[J]. 地质论评,2023,69(3):1021-1030.

    CHEN Y L,KONG L M,LIANG H R. Optimization of total organic carbon from well logging data in Lower Paleozoic marine shale:A case study from Changning area,southern Sichuan Basin[J]. Geological Review,2023,69(3):1021-1030. (in Chinese with English abstract
    [36] 王琦,李红梅. 开发地震在大庆长垣喇嘛甸油田储层预测中的应用[J]. 石油与天然气地质,2012,33(3):490-496.

    WANG Q,LI H M. Application of development seismology to reservoir prediction of Lamadian oilfield in Daqing placanticline[J]. Oil & Gas Geology,2012,33(3):490-496. (in Chinese with English abstract
    [37] 王权锋,王元君,李晶,等. 锦州27区多井约束地震反演及储层预测[J]. 西南石油大学学报(自然科学版),2008,30(2):23-26.

    WANG Q F,WANG Y J,LI J,et al. Multi-wells constrained seismic inversion and reservoir prediction in the 27th region,Jinzhou[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2008,30(2):23-26. (in Chinese with English abstract
    [38] 王丽萍. 智能优化算法叠前AVO非线性反演研究[D]. 武汉:中国地质大学(武汉),2015.

    WANG L P. Study on intelligent optimization algorithm with application to prestack AVO nonlinear inversion[D]. Wuhan:China University of Geosciences(Wuhan),2015. (in Chinese with English abstract
    [39] 罗艳玲. 喇嘛甸油田河流相储层井震结合预测方法[J]. 大庆石油地质与开发,2016,35(4):143-146.

    LUO Y L. Predicting method by the well and seismic integration for the fluvial facies reservoirs in Lamadian oilfield[J]. Petroleum Geology & Oilfield Development in Daqing,2016,35(4):143-146. (in Chinese with English abstract
    [40] 张文彪,段太忠,刘彦锋,等. 定量地质建模技术应用现状与发展趋势[J]. 地质科技情报,2019,38(3):264-275.

    ZHANG W B,DUAN T Z,LIU Y F,et al. Application status and development trend of quantitative geological modeling[J]. Geological Science and Technology Information,2019,38(3):264-275. (in Chinese with English abstract
    [41] CHEN Y H,BI J J,QIU X B,et al. A method of seismic meme inversion and its application[J]. Petroleum Exploration and Development,2020,47(6):1235-1245. doi: 10.1016/S1876-3804(20)60132-5
    [42] 高君,毕建军,赵海山,等. 地震波形指示反演薄储层预测技术及其应用[J]. 地球物理学进展,2017,32(1):142-145.

    GAO J,BI J J,ZHAO H S,et al. Seismic waveform inversion technology and application of thinner reservoir prediction[J]. Progress in Geophysics,2017,32(1):142-145. (in Chinese with English abstract
    [43] 王红岩,周祥林,胡伟,等. 西湖凹陷平北斜坡带含煤系地层储层预测[J]. 石油物探,2021,60(4):595-603.

    WANG H Y,ZHOU X L,HU W,et al. Prediction of coal-bearing strata reservoir in the Pingbei slope zone of the Xihu Depression[J]. Geophysical Prospecting for Petroleum,2021,60(4):595-603. (in Chinese with English abstract
    [44] 杨涛,乐友喜,吴勇. 波形指示反演在储层预测中的应用[J]. 地球物理学进展,2018,33(2):769-776. doi: 10.6038/pg2018BB0106

    YANG T,YUE Y X,WU Y. Application of the waveform inversion in reservoir prediction[J]. Progress in Geophysics,2018,33(2):769-776. (in Chinese with English abstract doi: 10.6038/pg2018BB0106
    [45] 杜佳,刘彦成,白洁玢,等. 基于波形指示模拟的致密砂岩储层预测[J]. 地质科技通报,2022,41(5):94-100.

    DU J,LIU Y C,BAI J B,et al. Prediction of tight sandstone reservoirs based on waveform indication simulation[J]. Bulletin of Geological Science and Technology,2022,41(5):94-100. (in Chinese with English abstract
    [46] 何文渊,毕建军,陈彦虎. 地震波形指示反演方法、原理及应用[M]. 北京:科学出版社,2021.

    HE W Y,BI J J,CHEN Y H. Method,principle and application of seismic waveform indication inversion[M]. Beijing:Science Press,2021. (in Chinese)
    [47] 谢春临,李永义,陈志德,等. 波形指示模拟在致密油水平井钻探中的应用[J]. 石油地球物理勘探,2021,56(3):564-573.

    XIE C L,LI Y Y,CHEN Z D,et al. Seismic motion simulation for horizontal well drilling in Fuyu reservoirs[J]. Oil Geophysical Prospecting,2021,56(3):564-573. (in Chinese with English abstract
    [48] 张双杰,李晓红,李思源. 波形指示反演在吉木萨尔芦草沟组页岩油甜点预测中的应用[C]//佚名. 2020年中国地球科学联合学术年会论文集. [出版地不详]:[出版者不详],2020:250-253.

    ZHANG S J,LI X H,LI S Y. The application of waveform indicator inversion in the prediction of shale oil desserts in the Lucaogou Formation in Jimsar[C]//Anon. Proceedings of the 2020 China Earth Science Joint Academic Annual Meeting. [S. 1. ]:[s. n. ],2020:250-253. (in Chinese)
    [49] 毛永强,李宁,曹开芳,等. 松南地区陆相泥页岩TOC定量预测技术[J]. 断块油气田,2020,27(3):313-317.

    MAO Y Q,LI N,CAO K F,et al. Quantitative prediction technology of TOC of continental mud shale in Songnan area[J]. Fault-Block Oil & Gas Field,2020,27(3):313-317. (in Chinese with English abstract
    [50] 顾雯,印兴耀,巫芙蓉,等. 波形驱动下多参数约束高分辨率反演方法:以四川盆地渝西地区龙马溪组页岩气为例[J]. 石油地球物理勘探,2021,56(6):1311-1321.

    GU W,YIN X Y,WU F R,et al. Multi-parameter constrained high-resolution inversion method driven by waveform:A case study of Longmaxi Formation shale gas in western Chongqing,Sichuan Basin[J]. Oil Geophysical Prospecting,2021,56(6):1311-1321. (in Chinese with English abstract
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  173
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-09
  • 录用日期:  2025-06-13
  • 修回日期:  2025-06-09
  • 网络出版日期:  2025-07-02

目录

    /

    返回文章
    返回