留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烃微渗漏蚀变信息提取及其浅部断裂解译分析:以库车坳陷却勒地区为例

吴珍云 邓寒潇 王莉 张治鑫 易子翔 但迈 毛可奕 邱思宇 夏菲 李长圣

吴珍云,邓寒潇,王莉,等. 烃微渗漏蚀变信息提取及其浅部断裂解译分析:以库车坳陷却勒地区为例[J]. 地质科技通报,2025,44(6):292-305 doi: 10.19509/j.cnki.dzkq.tb20250007
引用本文: 吴珍云,邓寒潇,王莉,等. 烃微渗漏蚀变信息提取及其浅部断裂解译分析:以库车坳陷却勒地区为例[J]. 地质科技通报,2025,44(6):292-305 doi: 10.19509/j.cnki.dzkq.tb20250007
WU Zhenyun,DENG Hanxiao,WANG Li,et al. Extraction of hydrocarbon microseepage alteration information and interpretation of shallow faults: A case study of the Quele area, Kuqa Depression[J]. Bulletin of Geological Science and Technology,2025,44(6):292-305 doi: 10.19509/j.cnki.dzkq.tb20250007
Citation: WU Zhenyun,DENG Hanxiao,WANG Li,et al. Extraction of hydrocarbon microseepage alteration information and interpretation of shallow faults: A case study of the Quele area, Kuqa Depression[J]. Bulletin of Geological Science and Technology,2025,44(6):292-305 doi: 10.19509/j.cnki.dzkq.tb20250007

烃微渗漏蚀变信息提取及其浅部断裂解译分析:以库车坳陷却勒地区为例

doi: 10.19509/j.cnki.dzkq.tb20250007
基金项目: 深地国家科技重大专项子课题(2024ZD1003306);国家自然科学基金项目(41602208;42072320;42462025);东华理工大学博士启动基金项目(DHBK2019053)
详细信息
    通讯作者:

    E-mail:zhenyun_wu@ecut.edu.cn

  • 中图分类号: P618.13;P627

Extraction of hydrocarbon microseepage alteration information and interpretation of shallow faults: A case study of the Quele area, Kuqa Depression

More Information
  • 摘要:

    库车坳陷却勒地区油气地质条件优越,油气资源丰富,发育丰富的盐构造和复杂的断裂构造,为油气烃类物质上移造成地表烃微渗漏蚀变异常提供了良好条件。通过探讨该地区油气烃类物质上升过程中的微渗漏特征,分析其与浅部断裂的关系,为进一步厘定油区构造提供了理论依据。以Sentinel-2A卫星遥感数据为主要数据源,通过主成分分析法(PCA)提取油气烃微渗漏的空间分布特征,并结合地震剖面解析和野外实地调查,对却勒地区的烃微渗漏特征进行了综合分析。结果表明,却勒地区的烃微渗漏现象表现出明显的空间差异,在东阿瓦特褶皱带、喀拉玉尔滚走滑断裂带和却勒断层(却勒盐推覆体)等区域,油气烃微渗漏异常较为明显,表现为地表出现了较强的烃微渗漏蚀变现象。而在米斯坎塔克背斜区域,油气烃微渗漏现象相对较弱,几乎没有显著的地表渗漏迹象。研究证明却勒地区烃微渗漏蚀变与出露地表断裂呈强相关性。同时结合野外调查和地震剖面构造解析,进一步推断米斯坎塔克背斜南翼发育的断裂为隐伏断裂,该断裂未切穿地层至地表出露,因而未造成地表油气烃微渗漏蚀变。

     

  • 图 1  库车坳陷构造带分布图(a,b)(据文献[24-25]改)及研究区地质图(c)

    a. 库车坳陷所处位置示意图;b. 库车坳陷构造分带及却勒地区所处大地构造位置;c. 却勒地区地质图

    Figure 1.  Distribution of structural belts in the Kuqa Depression (a,b) and geological map of the study area (c)

    图 2  研究区地层柱状图(据文献[29-30]改)

    Figure 2.  Stratigraphic column of the study area

    图 3  东阿瓦特地震反射剖面(剖面位置见图1c)

    Figure 3.  Seismic reflection profile through the eastern Awate

    图 4  米斯坎塔克背斜地震反射剖面(剖面位置见图1c)

    Figure 4.  Seismic reflection profile through the Miskantake anticline

    图 5  研究区油气分布图(据文献[39-41]改)

    Figure 5.  Oil and gas distribution map of the study area

    图 6  蚀变矿物光谱曲线(据美国地质调查局USGS光谱库,B2~B12. Band2~Band12波段)

    Figure 6.  Spectral curve of mineralized alteration

    图 7  数据处理及烃微渗漏信息提取、应用流程图

    Figure 7.  Data processing flowchart and hydrocarbon microseepage information extraction and application

    图 8  烃微渗漏蚀变区域图

    Figure 8.  Hydrocarbon microseepage alteration zone map

    图 9  东阿瓦特地区蚀变分布区

    Figure 9.  Distribution of alteration zones in the eastern Awate area

    图 10  却勒地区野外勘查照片

    a. 野外勘查点;b~d. 背斜南翼地层产状;e, f. 显示南翼地层中出现剥蚀沟谷,但未发现断层出露

    Figure 10.  Field exploration photos in the Quele area

    图 11  基于多源信息的却勒地区米斯坎塔克背斜地震剖面综合解译(剖面位置见图1c)

    Figure 11.  Comprehensive seismic profile interpretation of the Misikantake anticline in the Quele area based on multi-source information

    表  1  不同波段不同矿物蚀变主成分分析特征向量矩阵

    Table  1.   Eigenvector matrixes of PCA results of different mineralized alteration at different wavelength

    碳酸盐矿化 B2 B5 B9 B12
    PC1 0.403281 0.530089 0.292114 0.686323
    PC2 0.470070 0.339078 0.401637 0.709047
    PC3 0.457590 0.222650 0.857485 0.075880
    PC4 0.637974 0.744620 0.134449 0.143019
    黏土矿化 B3 B8a B11 B12
    PC1 0.378322 0.235866 0.550977 0.705453
    PC2 0.719525 0.531536 0.234236 0.380641
    PC3 0.569885 0.776842 0.231427 0.134866
    PC4 0.119950 0.241564 0.766811 0.582460
    红层褪色 B3 B4 B8a B11
    PC1 0.511409 0.633188 0.308594 0.492244
    PC2 0.389663 0.304996 0.104515 0.862680
    PC3 0.164924 0.280572 0.933693 0.059359
    PC4 0.747947 0.653705 0.057365 0.099775
    下载: 导出CSV

    表  2  不同断层烃微渗漏分布比

    Table  2.   Distribution area ratio of hydrocarbon microseepage across different faults

    缓冲区
    半径/m
    隐伏断层缓
    冲区面积/km2
    其他断裂缓
    冲区面积/km2
    隐伏断层烃微
    渗漏面积占比/%
    其他断裂烃微
    渗漏面积占比/%
    50 2.96 15.16 0 15.92
    100 2.98 15.17 0 15.26
    500 24.38 121.47 0 15.72
    1000 31.89 151.21 0 12.97
    5000 311.58 1229.24 0.51 7.84
    下载: 导出CSV
  • [1] CHANG F N, DONG S C, YIN H W, et al. Kinematic response of subaerial salt diapirs to geomorphic, tectonic and climatic regimes: Insights from space-based observations in the western Kuqa fold-thrust belt, NW China[J]. Tectonics, 2023, 42(4): e2022TC007670. doi: 10.1029/2022TC007670
    [2] 周子勇. 高光谱遥感油气勘探进展[J]. 遥感技术与应用, 2014, 29(2): 352-361.

    ZHOU Z Y. Progress in hyperspectral remote sensing for petroleum prospecting[J]. Remote Sensing Technology and Application, 2014, 29(2): 352-361. (in Chinese with English abstract
    [3] TANG J H, XU Y, WANG G J, et al. Microseepage of methane to the atmosphere from the Dawanqi oil-gas field, Tarim Basin, China[J]. Journal of Geophysical Research (Atmospheres), 2017, 122(8): 4353-4363.
    [4] 祝民强, 刘德长, 赵英俊. 鄂尔多斯盆地伊盟隆起区东部微烃渗漏区的遥感识别及其意义[J]. 遥感学报, 2007, 11(6): 882-890.

    ZHU M Q, LIU D C, ZHAO Y J. Remote sensing detecting for the hydrocarbon microseepage and its implication on the east Yimeng Uplift, Ordos Basin, China[J]. Journal of Remote Sensing, 2007, 11(6): 882-890. (in Chinese with English abstract
    [5] 武鼎, 周觅, 王俊虎, 等. 基于哨兵-2数据的白岗岩型铀矿构造蚀变特征研究: 以纳米比亚罗辛矿区为例[J]. 铀矿地质, 2024, 40(2): 285-293.

    WU D, ZHOU M, WANG J H, et al. Structural and alteration characteristics of alaskite type uranium deposit based on sentinel-2 data: An example from the Rossing mine, Namibia[J]. Uranium Geology, 2024, 40(2): 285-293. (in Chinese with English abstract
    [6] NGASSAM MBIANYA G, NGNOTUE T, TAKODJOU WAMBO J D, et al. Remote sensing satellite-based structural/alteration mapping for gold exploration in the Ketté goldfield, eastern Cameroon[J]. Journal of African Earth Sciences, 2021, 184: 104386. doi: 10.1016/j.jafrearsci.2021.104386
    [7] HOSSEINPOUR M. Relationship between hydrocarbon micro-seepages and structures by detection of altered minerals using ASTER remote sensing data in the west of Coastal Fars, Zagros, Iran[J]. Arabian Journal of Geosciences, 2020, 13(13): 511. doi: 10.1007/s12517-020-05568-4
    [8] SHI P L, FU B H, NINOMIYA Y, et al. Multispectral remote sensing mapping for hydrocarbon seepage-induced lithologic anomalies in the Kuqa Foreland Basin, South Tianshan[J]. Journal of Asian Earth Sciences, 2012, 46: 70-77. doi: 10.1016/j.jseaes.2011.10.019
    [9] YIN A, NIE S, CRAIG P, et al. Late Cenozoic tectonic evolution of the southern Chinese Tianshan[J]. Tectonics, 1998, 17(1): 1-27. doi: 10.1029/97TC03140
    [10] 张冠杰, 张滨鑫, 徐珂, 等. 塔里木盆地库车坳陷博孜区块超深层致密砂岩储层裂缝特征及其对油气产能的影响[J]. 地质科技通报, 2024, 43(2): 75-86.

    ZHANG G J, ZHANG B X, XU K, et al. Fracture characteristics of ultra-deep tight sandstone reservoirs in the Bozi Block, Kuqa Depression of Tarim Basin, and effects on oil-gas production[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 75-86. (in Chinese with English abstract
    [11] 卢华复, 贾东, 陈楚铭, 等. 库车新生代构造性质和变形时间[J]. 地学前缘, 1999, 6(4): 215-221.

    LU H F, JIA D, CHEN C M, et al. Nature and timing of the Kuqa Cenozoic structures[J]. Earth Science Frontiers, 1999, 6(4): 215-221. (in Chinese with English abstract
    [12] 汤良杰, 贾承造, 金之钧, 等. 塔里木盆地库车前陆褶皱带中段盐相关构造特征与油气聚集[J]. 地质论评, 2003, 49(5): 501-506.

    TANG L J, JIA C Z, JIN Z J, et al. Salt-related structural characteristics and hydrocarbon accumulation in the middle segment of the Kuqa foreland fold belt in the northern Tarim Basin, NW China[J]. Geological Review, 2003, 49(5): 501-506. (in Chinese with English abstract
    [13] WU Z Y, YIN H W, WANG X, et al. Characteristics and deformation mechanism of salt-related structures in the western Kuqa Depression, Tarim Basin: Insights from scaled sandbox modeling[J]. Tectonophysics, 2014, 612/613: 81-96.
    [14] WANG W, YIN H W, JIA D, et al. Along-strike structural variation in a salt-influenced fold and thrust belt: Analysis of the Kuqa Depression[J]. Tectonophysics, 2020, 786: 228456. doi: 10.1016/j.tecto.2020.228456
    [15] 田军, 王清华, 杨海军, 等. 塔里木盆地油气勘探历程与启示[J]. 新疆石油地质, 2021, 42(3): 272-282.

    TIAN J, WANG Q H, YANG H J, et al. Petroleum exploration history and enlightenment in Tarim Basin[J]. Xinjiang Petroleum Geology, 2021, 42(3): 272-282. (in Chinese with English abstract
    [16] 余一欣, 黄太柱, 汤良杰, 等. 塔里木盆地塔中隆起盐相关断裂发育特征[J]. 地质学报, 2011, 85(2): 179-184.

    YU Y X, HUANG T Z, TANG L J, et al. Salt-related faults in the Tazhong uplift, Tarim Basin[J]. Acta Geologica Sinica, 2011, 85(2): 179-184. (in Chinese with English abstract
    [17] 吴珍云. 含盐沉积盆地盐构造分析和物理模拟: 以库车坳陷、滨里海盆地和苏丹红海盆地为例[D]. 南京: 南京大学, 2014.

    WU Z Y. Salt tectonics analysis and physical simulation in salt-bearing sedimentary basins: A case study of the Kuqa Depression, the Caspian Sea Basin, and the Red Sea Basin of Sudan [D]. Nanjing: Nanjing University, 2014. (in Chinese with English abstract
    [18] JIA K, YUAN W F, LIU J L, et al. Hydrocarbon generation and accumulation in the eastern Kuqa Depression, northwestern China: Insights from basin and petroleum system modeling[J]. Applied Sciences, 2024, 14(3): 1217. doi: 10.3390/app14031217
    [19] 赵亚汶, 谢会文, 严德天, 等. 库车坳陷侏罗系克孜勒努尔组深部煤层特征及启示[J]. 地质科技通报, 2025, 44(5): 53-64.

    ZHAO Y W, XIE H W, YAN D T, et al. Characteristics and enlightenment of deep coal rocks in the Jurassic Kizilnur Formation of Kuqa Depression[J]. Bulletin of Geological Science and Technology, 2025, 44(5): 53-64. (in Chinese with English abstract
    [20] 蒋俊, 平宏伟, 吴少军, 等. 塔里木盆地库车坳陷南斜坡海陆相来源油识别与混源油贡献定量评价: 以牙哈构造带为例[J]. 地质科技通报, 2025, 44(4): 201-216.

    JIANG J, PING H W, WU S J, et al. Identification of oil sources from marine-continental faces source rooks and quantitative evaluation of mixed-source oil contributions in the southern slope of Kuqa Depression, Tarim Basin: A case study of the Yaha structure zone[J]. Bulletin of Geological Science and Technology, 2025, 44(4): 201-216. (in Chinese with English abstract
    [21] 杨秀磊, 吴珍云, 尹宏伟, 等. 基底坡折带对盐上覆褶皱冲断构造形成演化影响的实验模拟: 以库车坳陷西段米斯坎塔克背斜为例[J]. 大地构造与成矿学, 2025, 49(1): 57-69.

    YANG X L, WU Z Y, YIN H W, et al. Physical modeling of the influence of basement slope on the formation and evolution of salt-related fold-and-thrust structures in the overburden: Taking the Misikantake anticline in the western Kuqa Depression as an example[J]. Geotectonica et Metallogenia, 2025, 49(1): 57-69. (in Chinese with English abstract
    [22] HE W H, WANG W, XIE H W, et al. The effects of salt flow on the cross-section restoration of salt-bearing fold-and-thrust belts: An example from the Kuqa Depression[J]. Journal of Structural Geology, 2023, 167: 104795. doi: 10.1016/j.jsg.2023.104795
    [23] 唐鹏程, 饶刚, 李世琴, 等. 库车褶皱−冲断带前缘盐层厚度对滑脱褶皱构造特征及演化的影响[J]. 地学前缘, 2015, 22(1): 312-327.

    TANG P C, RAO G, LI S Q, et al. The impact of salt layer thickness on the structural characteristics and evolution of detachment folds in the leading edge of Kuqa fold and thrust belt[J]. Earth Science Frontiers, 2015, 22(1): 312-327. (in Chinese with English abstract
    [24] LI S Q, WANG X, SUPPE J. Compressional salt tectonics and synkinematic strata of the western Kuqa Foreland Basin, southern Tianshan, China[J]. Basin Research, 2012, 24(4): 475-497. doi: 10.1111/j.1365-2117.2011.00531.x
    [25] 吴珍云, 杨秀磊, 尹宏伟, 等. 库车坳陷西段阿瓦特构造转换带盐构造演化特征及影响因素[J]. 地球科学, 2023, 48(4): 1271-1287.

    WU Z Y, YANG X L, YIN H W, et al. Characteristics and influencing factors of salt structure evolution in Awate transfer zone, western Kuqa Depression[J]. Earth Science, 2023, 48(4): 1271-1287. (in Chinese with English abstract
    [26] 唐鹏程, 汪新, 谢会文, 等. 库车坳陷却勒地区新生代盐构造特征、演化及变形控制因素[J]. 地质学报, 2010, 84(12): 1735-1745.

    TANG P C, WANG X, XIE H W, et al. The Quele area of the Kuqa Depression, Tarim Basin, NW China: Cenozoic salt structures, evolution and controlling factors[J]. Acta Geologica Sinica, 2010, 84(12): 1735-1745. (in Chinese with English abstract
    [27] 于璇, 侯贵廷, 能源, 等. 库车坳陷构造裂缝发育特征及分布规律[J]. 高校地质学报, 2016, 22(4): 644-656.

    YU X, HOU G T, NENG Y, et al. Development and distribution characteristics of tectonic fractures in Kuqa Depression[J]. Geological Journal of China Universities, 2016, 22(4): 644-656. (in Chinese with English abstract
    [28] YANG K J, QI J F, XU L W, et al. Influence of preexisting structures on salt structures in the Kuqa Depression, Tarim Basin, Western China: Insights from seismic data and numerical simulations[J]. Basin Research, 2024, 36(1): e12850. doi: 10.1111/bre.12850
    [29] 彭俊文. 塔里木盆地库车坳陷深部和浅部油气成藏特征与分布规律[D]. 北京: 中国石油大学(北京), 2016.

    PENG J W. Characteristics and distribution of deep and shallow oil and gas accumulation in Kuqa Depression, Tarim Basin[D]. Beijing: China University of Petroleum (Beijing), 2016. (in Chinese with English abstract
    [30] 汪瑞. 库车南斜坡西段油气运移与成藏模式研究[D]. 北京: 中国石油大学(北京), 2023.

    WANG R. Study on hydrocarbon migration and accumulation model in the western segment of the southern slope of Kuqa[D]. Beijing: China University of Petroleum (Beijing), 2023. (in Chinese with English abstract
    [31] TANG P C, RAO G, LI S Q, et al. Lateral structural variations and drainage response along the Misikantage anticline in the western Kuqa fold-and-thrust belt, southern Tianshan, NW China[J]. Tectonophysics, 2017, 721: 196-210. doi: 10.1016/j.tecto.2017.10.007
    [32] ZHAO B, WANG X. Evidence of early passive diapirism and tectonic evolution of salt structures in the western Kuqa Depression (Quele area), southern Tianshan (NW China)[J]. Journal of Asian Earth Sciences, 2016, 125: 138-151. doi: 10.1016/j.jseaes.2016.05.021
    [33] 管树巍, 陈宁华, 徐峰, 等. 库车坳陷秋里塔格褶皱带几何学和运动学特征与油气圈闭[J]. 石油学报, 2003, 24(6): 30-34.

    GUAN S W, CHEN N H, XU F, et al. Properties of geometry and kinematics related to hydrocarbon traps in Qiulitag anticline zone of Kuqa Depression[J]. Acta Petrolei Sinica, 2003, 24(6): 30-34. (in Chinese with English abstract
    [34] 肖中尧, 黄光辉, 卢玉红, 等. 库车坳陷却勒1井原油的重排藿烷系列及油源对比[J]. 石油勘探与开发, 2004, 31(2): 35-37.

    XIAO Z Y, HUANG G H, LU Y H, et al. Rearranged hopanes in oils from the Quele 1 well, Tarim Basin, and the significance for oil correlation[J]. Petroleum Exploration and Development, 2004, 31(2): 35-37. (in Chinese with English abstract
    [35] 梁狄刚, 陈建平, 张宝民, 等. 塔里木盆地库车坳陷陆相油气的生成[M]. 北京: 石油工业出版社, 2004.

    LIANG D G, CHEN J P, ZHANG B M, et al. Generation of terrestrial oil and gas in the Kuqa Depression, Tarim Basin[M]. Beijing: Petroleum Industry Press, 2004. (in Chinese)
    [36] 王招明, 田军, 王清华, 等. 塔里木盆地油气勘探与实践[M]. 北京: 石油工业出版社, 2004.

    WANG Z M, TIAN J, WANG Q H, et al. Oil and gas exploration and practice in the Tarim Basin [M]. Beijing: Petroleum Industry Press, 2004. (in Chinese)
    [37] 蔚远江, 杨涛, 郭彬程, 等. 前陆冲断带油气资源潜力、勘探领域分析与有利区带优选[J]. 中国石油勘探, 2019, 24(1): 46-59.

    YU Y J, YANG T, GUO B C, et al. Oil and gas resources potentials, exploration fields and favorable zones in foreland thrust belts[J]. China Petroleum Exploration, 2019, 24(1): 46-59. (in Chinese with English abstract
    [38] LI J, YANG X Z, DONG C Y, et al. Characteristics of orderly hydrocarbon accumulation of deep reservoirs in Kuqa Depression and its exploration implications[J]. Geological Journal, 2023, 58(11): 4103-4120. doi: 10.1002/gj.4701
    [39] 杜金虎, 田军, 李国欣, 等. 库车坳陷秋里塔格构造带的战略突破与前景展望[J]. 中国石油勘探, 2019, 24(1): 16-23.

    DU J H, TIAN J, LI G X, et al. Strategic breakthrough and prospect of Qiulitag structural belt in Kuqa Depression[J]. China Petroleum Exploration, 2019, 24(1): 16-23. (in Chinese with English abstract
    [40] 王清华, 张亮, 吕修祥, 等. 库车前陆盆地前缘隆起西段油气成藏类型及分布预测[J]. 石油学报, 2023, 44(5): 730-747.

    WANG Q H, ZHANG L, LÜ X X, et al. Hydrocarbon accumulation types and distribution prediction of western section of frontal uplift of Kuqa Foreland Basin[J]. Acta Petrolei Sinica, 2023, 44(5): 730-747. (in Chinese with English abstract
    [41] 浦蔡鑫. 微渗漏甲烷通量监测及仿真研究: 以新疆塔里木盆地库车坳陷为例[D]. 杭州: 杭州电子科技大学, 2023.

    PU C X. Monitoring and numerical simulation of methane microseepage: Take the Kuqa Depression in Tarim Basin of Xinjian as an exanple[D]. Hangzhou: Hangzhou Dianzi University, 2023. (in Chinese with English abstract
    [42] 刘翔, 樊海龙, 郭建明, 等. 基于ASTER数据对中非裂谷系东部地表构造解释及油气信息提取[J]. 遥感技术与应用, 2021, 36(3): 649-662.

    LIU X, FAN H L, GUO J M, et al. Surface structure interpretation and oil and gas information extraction from ASTER on East Central African Rift system[J]. Remote Sensing Technology and Application, 2021, 36(3): 649-662. (in Chinese with English abstract
    [43] 关颖, 朱翊. 基于空间分析的区域地质灾害点的分布特征研究: 以新疆为例[J]. 测绘工程, 2016, 25(9): 15-19.

    GUAN Y, ZHU Y. A study of the distribution characteristics of regional geological hazards based on spatial analysis: A case of Xinjiang[J]. Engineering of Surveying and Mapping, 2016, 25(9): 15-19. (in Chinese with English abstract
    [44] 周超凡, 宫辉力, 陈蓓蓓, 等. 北京地面沉降时空分布特征研究[J]. 地球信息科学学报, 2017, 19(2): 205-215.

    ZHOU C F, GONG H L, CHEN B B, et al. Study of temporal and spatial characteristics of land subsidence in Beijing[J]. Journal of Geo-Information Science, 2017, 19(2): 205-215. (in Chinese with English abstract
    [45] 王晓鹏, 谢志清, 伍跃中. ETM图像数据中矿化蚀变信息的提取: 以西昆仑塔什库尔干地区为例[J]. 地质与资源, 2002, 11(2): 119-122.

    WANG X P, XIE Z Q, WU Y Z. Information extraction of minerali zing alteration from etm space image: Taking Taxkorgan area of West Kunlun Mountain as an example[J]. Journal of Precious Metallic Geology, 2002, 11(2): 119-122. (in Chinese with English abstract
    [46] 康高峰. 柴达木盆地北缘成矿带遥感信息提取及有利成矿区预测研究[D]. 西安: 西北大学, 2009.

    KANG G F. Remote sensing information extraction and favorable mineralization area prediction in the northern metallogenic belt of the Qaidam Basin [D]. Xi'an: Northwestern University, 2009. (in Chinese with English abstract
    [47] 赵芝玲, 王萍, 荆林海, 等. 用ASTER数据提取植被覆盖区遥感铁矿化蚀变信息[J]. 金属矿山, 2016(10): 109-115.

    ZHAO Z L, WANG P, JING L H, et al. Extraction method of iron mineralized alteration information in vegetation covered areas based on remote sensing ASTER data[J]. Metal Mine, 2016(10): 109-115. (in Chinese with English abstract
    [48] 韩耀祖, 谷永兴, 刘军, 等. 塔里木盆地克拉苏构造带西段构造成因及油气远景展望: 以阿瓦特地区为例[J]. 天然气地球科学, 2016, 27(12): 2160-2168.

    HAN Y Z, GU Y X, LIU J, et al. Tectonic origin and the prospect of oil gas in West Kelasu structural belt: A case study of Awat segment[J]. Natural Gas Geoscience, 2016, 27(12): 2160-2168. (in Chinese with English abstract
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  67
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-06
  • 录用日期:  2025-07-15
  • 修回日期:  2025-07-01
  • 网络出版日期:  2025-10-31

目录

    /

    返回文章
    返回