留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

专栏评论:高新技术赋能地震与地质灾害防治研究进展

许冲 高明星 薛智文 黄雨 吴礼舟 邬忠虎

许冲,高明星,薛智文,等. 专栏评论:高新技术赋能地震与地质灾害防治研究进展[J]. 地质科技通报,2025,44(4):16-22 doi: 10.19509/j.cnki.dzkq.tb20250004
引用本文: 许冲,高明星,薛智文,等. 专栏评论:高新技术赋能地震与地质灾害防治研究进展[J]. 地质科技通报,2025,44(4):16-22 doi: 10.19509/j.cnki.dzkq.tb20250004
XU Chong,GAO Mingxing,XUE Zhiwen,et al. Column Review: Advancements in earthquake and geological disaster mitigation empowered by advanced technologies[J]. Bulletin of Geological Science and Technology,2025,44(4):16-22 doi: 10.19509/j.cnki.dzkq.tb20250004
Citation: XU Chong,GAO Mingxing,XUE Zhiwen,et al. Column Review: Advancements in earthquake and geological disaster mitigation empowered by advanced technologies[J]. Bulletin of Geological Science and Technology,2025,44(4):16-22 doi: 10.19509/j.cnki.dzkq.tb20250004

专栏评论:高新技术赋能地震与地质灾害防治研究进展

doi: 10.19509/j.cnki.dzkq.tb20250004
基金项目: 国家重点研发计划项目“降雨型群发滑坡时空多尺度风险区划与韧性评价技术”(2024YFC3012604);重庆市水利局项目“三峡库区消落区岩体劣化灾害监测预警技术方法研究”(CQS24C00836)
详细信息
    通讯作者:

    E-mail:xc11111111@126.com

  • 中图分类号: P315;P642.2;TP39

Column Review: Advancements in earthquake and geological disaster mitigation empowered by advanced technologies

More Information
  • 摘要:

    随着遥感、物联网、人工智能、大数据、云计算以及近年来迅速发展的大语言模型(large language models,简称LLMs)等高新技术持续取得突破,地震与地质灾害研究正加速从传统依赖单一数据源与经验规则的范式,迈向多源信息融合与智能驱动的风险识别和决策支持体系。基于“高新技术在地震与地质灾害领域的应用研究”专栏,系统梳理了当前在物理仿真模拟、深度学习识别、遥感集成分析、智能预警技术与知识图谱构建等关键方向的研究进展,概括展示了高新技术在灾害风险监测、致灾机制解析与应急响应支撑中的典型应用与发展趋势。在此基础上,进一步总结了多模态数据集成、灾害链建模、模型泛化能力与场景适应性等方面面临的技术瓶颈,探讨了大语言模型在地震与地质灾害领域中的潜在价值,包括知识抽取、因果推理与多场景风险研判等方面的前沿探索。

     

  • 图 1  学科关键词共现网络分析图

    Figure 1.  Co-occurrence network analysis of subject keywords

    图 2  地震与地质灾害防治高新技术发展趋势图

    Figure 2.  Development trends of advanced technologies in earthquake and geological disaster prevention

    图 3  地震与地质灾害防治技术瓶颈与解决方案

    Figure 3.  Technological bottlenecks and solutions in earthquake and geological disaster prevention

  • [1] XU C,XU X W,YAO X,et al. Three (nearly) complete inventories of landslides triggered by the May 12,2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis[J]. Landslides,2014,11(3):441-461. doi: 10.1007/s10346-013-0404-6
    [2] XU C. Preparation of earthquake-triggered landslide inventory maps using remote sensing and GIS technologies:Principles and case studies[J]. Geoscience Frontiers,2015,6(6):825-836. doi: 10.1016/j.gsf.2014.03.004
    [3] GIROTTO C D,PIADEH F,BKHTIARI V,et al. A critical review of digital technology innovations for early warning of water-related disease outbreaks associated with climatic hazards[J]. International Journal of Disaster Risk Reduction,2024,100:104151. doi: 10.1016/j.ijdrr.2023.104151
    [4] KRICHEN M,ABDALZAHER M S,ELWEKEIL M,et al. Managing natural disasters:An analysis of technological advancements,opportunities,and challenges[J]. Internet of Things and Cyber-Physical Systems,2024,4:99-109. doi: 10.1016/j.iotcps.2023.09.002
    [5] LIU J L,XU C,ZHAO B B,et al. Deformation slope extraction and influencing factor analysis using LT-1 satellite data:A case study of Chongqing and surrounding areas,China[J]. Remote Sensing,2025,17(1):156. doi: 10.3390/rs17010156
    [6] OUELLET S M,DETTMER J,LATO M J,et al. Previously hidden landslide processes revealed using distributed acoustic sensing with nanostrain-rate sensitivity[J]. Nature Communications,2024,15:6239. doi: 10.1038/s41467-024-50604-6
    [7] XIE T,ZHANG C C,SHI B,et al. Integrating distributed acoustic sensing and computer vision for real-time seismic location of landslides and rockfalls along linear infrastructure[J]. Landslides,2024,21(8):1941-1959. doi: 10.1007/s10346-024-02268-y
    [8] LV J C,ZHANG R,BAO X,et al. Time-series InSAR landslide three-dimensional deformation prediction method considering meteorological time-delay effects[J]. Engineering Geology,2025,350:107986. doi: 10.1016/j.enggeo.2025.107986
    [9] LINGARAJ K L,MALGHAN R L,RAO M C K,et al. Adaptive landslide monitoring in wireless sensor networks using FLPSO-based MIP systems[J]. Results in Engineering,2025,25:104329. doi: 10.1016/j.rineng.2025.104329
    [10] QI W W,WEI M F,YANG W T,et al. Automatic mapping of landslides by the ResU-net[J]. Remote Sensing,2020,12(15):2487. doi: 10.3390/rs12152487
    [11] XUE Z W,XU C,XU X W. Application of ChatGPT in natural disaster prevention and reduction[J]. Natural Hazards Research,2023,3(3):556-562. doi: 10.1016/j.nhres.2023.07.005
    [12] XIE C C,GAO H R,HUANG Y D,et al. Leveraging the DeepSeek large model:A framework for AI-assisted disaster prevention,mitigation,and emergency response systems[J]. Earthquake Research Advances,2025:100378.
    [13] 肖子亢,许冲,李宏,等. 地质灾害物理仿真实验发展现状及趋势分析[J]. 地质科技通报,2025,44(4):23-47.

    XIAO Z K,XU C,LI H,et al. Development status and trend analysis of physical simulation experiments for geological hazards[J]. Bulletin of Geological Science and Technology,2025,44(4):23-47. (in Chinese with English abstract
    [14] 饶炜博,陈刚,邹崇尧,等. 基于历史样本增强的滑坡智能识别改进算法[J]. 地质科技通报,2025,44(4):48-61.

    RAO W B,CHEN G,ZOU C Y,et al. An improved algorithm for intelligent landslide identification based onhistorical sample enhancement[J]. Bulletin of Geological Science and Technology,2025,44(4):48-61. (in Chinese with English abstract
    [15] 韦春豪,李为乐,吴章雷,等. 白鹤滩库区活动滑坡识别及形变影响因素分析[J]. 地质科技通报,2025,44(4):62-77.

    WEI C H,LI W L,WU Z L,et al. Identification of Active Landslides and Analysis of Deformation Influencing Factors in the Baihetan Reservoir Area[J]. Bulletin of Geological Science and Technology,2025,44(4):62-77. (in Chinese with English abstract
    [16] 曹凯,卢渊,庞小龙,等. 基于微震事件频次的采空区沉陷变形智能预警方法[J]. 地质科技通报,2025,44(4):78-89.

    CAO K,LU Y,PANG X L,et al. Intelligent early warning method for subsidence and deformation in goafbased on the frequency of microseismic events[J]. Bulletin of Geological Science and Technology,2025,44(4):78-89. (in Chinese with English abstract
    [17] 吴麒瑞,田苗,谢忠,等. 融合多模态数据的地震灾害知识图谱 构建及应用[J]. 地质科技通报,2025,44(4):90-106.

    WU Q R,TIAN M,XIE Z,et al. Construction and Application of Earthquake Disaster Knowledge Graph Fusing and Multimodal Data[J]. Bulletin of Geological Science and Technology,2025,44(4):90-106. (in Chinese with English abstract
    [18] HUANG Y D,XU C,ZHANG X J,et al. Bibliometric analysis of landslide research based on the WOS database[J]. Natural Hazards Research,2022,2(2):49-61. doi: 10.1016/j.nhres.2022.02.001
    [19] HUANG Y D,XU C,ZHANG X J,et al. Research in the field of natural hazards based on bibliometric analysis[J]. Natural Hazards Review,2023,24(2):04023012. doi: 10.1061/NHREFO.NHENG-1739
  • 加载中
图(3)
计量
  • 文章访问数:  588
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-26
  • 录用日期:  2025-07-03
  • 修回日期:  2025-07-01
  • 网络出版日期:  2025-07-10

目录

    /

    返回文章
    返回