留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深部咸水层CO2封存的热−水−力模型研究

魏子俊 高科

魏子俊,高科. 深部咸水层CO2封存的热−水−力模型研究[J]. 地质科技通报,2025,44(4):129-141 doi: 10.19509/j.cnki.dzkq.tb20240772
引用本文: 魏子俊,高科. 深部咸水层CO2封存的热−水−力模型研究[J]. 地质科技通报,2025,44(4):129-141 doi: 10.19509/j.cnki.dzkq.tb20240772
WEI Zijun,GAO Ke. CO2 sequestration in deep saline aquifers with integrated thermo-hydro-mechanical model[J]. Bulletin of Geological Science and Technology,2025,44(4):129-141 doi: 10.19509/j.cnki.dzkq.tb20240772
Citation: WEI Zijun,GAO Ke. CO2 sequestration in deep saline aquifers with integrated thermo-hydro-mechanical model[J]. Bulletin of Geological Science and Technology,2025,44(4):129-141 doi: 10.19509/j.cnki.dzkq.tb20240772

深部咸水层CO2封存的热−水−力模型研究

doi: 10.19509/j.cnki.dzkq.tb20240772
基金项目: 深圳市科技计划项目(JCYJ20220530113612028);广东省基础与应用基础研究基金(2023A1515011244);广东省地球物理高分辨率成像技术重点实验室资助项目(2022B1212010002)
详细信息
    作者简介:

    魏子俊:E-mail:12149021@mail.sustech.edu.cn

    通讯作者:

    E-mail:gaok@sustech.edu.cn

  • 中图分类号: P642;X701

CO2 sequestration in deep saline aquifers with integrated thermo-hydro-mechanical model

More Information
  • 摘要:

    碳捕获与储存技术对缓解全球气候危机至关重要,深部咸水层因巨大储存潜力成为首选储存地点。然而,CO2受浮力作用易通过裂缝或断层向地面逃逸。因此,研究CO2注入对天然断层影响以及断层活化对CO2迁移的反馈效应意义重大。构建了完全耦合的两相热−水−力模型,以模拟CO2注入、断层失效与羽流传播间相互作用。研究表明:①断层激活后渗透率分布呈显著二分性,且高渗区形成与孔隙压力场时空演化紧密耦合,率先失效区域促进孔压释放并抑制了断层进一步活化,使断层呈局部激活特征。②CO2迁移范围与岩体冷却区域不等价,羽流逸散快速而广袤,经2 a注入羽流前缘可达1500 m;温度场扩散缓慢且集中,经20 a注入冷却区域仅200 m,受限温度场不易诱使断层活化,利于碳封存长期安全。③断层构型对封存安全性具有重大影响,以逆断层封闭性能最佳,正断层最劣,走滑断层介于两者之间,逆断层对CO2有效封存量比正断层高出约25%。建立的含损伤行为的两相热−水−力模型鲁棒性良好,能准确刻画断层渐进失效与羽流迁移的复杂交互机制,为碳封存工程长期安全性评估提供了理论与技术支撑。

     

  • 图 1  非等温热固结模型及其边界条件示意(pL. 外部荷载;T. 顶面温度;p0T0. 初始压力、温度;z. z轴坐标轴;下同)

    Figure 1.  Schematic diagram of the non-isothermal thermal consolidation model and its boundary conditions

    图 2  非等温热固结问题数值解与解析解比较(h. 土柱高度)

    Figure 2.  Contrast between the numerical and analytical solutions for the non-isothermal consolidation model

    图 3  二维多层储层模型示意图

    Figure 3.  Schematic diagram of the two-dimensional multi-layer reservoir model

    图 4  断层剪切应力和抗剪强度历史曲线

    Figure 4.  Historical curves of fault shear stress and shear strength

    图 5  断层渗透率随时间的演化

    Figure 5.  Evolution of the fault permeability over time

    图 6  断层激活对孔隙压力场的影响

    Figure 6.  Influence of fault activation on pore pressure field

    图 7  CO2注入引起的地层变形

    Figure 7.  Structural deformation caused by CO2 injection

    图 8  断层激活对CO2羽流扩散速度的影响($S_{{\mathrm{CO}}_2} $为CO2饱和度,下同)

    Figure 8.  Accelerating diffusion process of CO2 plumes at the moment of fault activation

    图 9  注入周期内CO2饱和度场分布

    Figure 9.  Evolution of CO2 saturation field during the injection cycle

    图 10  注入周期下储层最终温度场和CO2密度分布

    Figure 10.  Final distribution of the temperature field and CO2 density during the injection cycle

    图 11  停泵后CO2分布的长期演化

    Figure 11.  Long-term evolution of CO2 distribution after pump shutdown

    图 12  不同断层构型示意图

    Figure 12.  Schematic diagram of different fault configurations

    图 13  正断层破裂过程与渗透率演化(k. 渗透率;Δp. 孔隙压力增量,下同)

    Figure 13.  Fracture process and permeability evolution of the normal fault

    图 14  逆断层破裂过程与渗透率演化

    Figure 14.  Fracture process and permeability evolution of the reverse fault

    图 15  不同构型断层下CO2流线与CO2饱和度场分布

    Figure 15.  CO2 flow lines and saturation field distribution under different fault configurations

    图 16  不同类型断层封存效率比较

    Figure 16.  Comparison of storage efficiency of different types of faults

    表  1  一维非等温热固结模型采用的各物理量

    Table  1.   Parameters used in the one-dimensional non-isothermal thermal consolidation model

    参数 取值
    模型尺寸h/m 1.0
    土体热膨胀系数αs/K−1
    水的热膨胀系数αf/K−1
    荷载大小pL/Pa
    弹性模量E/Pa
    泊松比v
    比奥系数b
    土体孔隙度ϕ
    水力传导率K/(m·s−1
    水的密度ρw/(kg·m−3
    固相密度ρs/(kg·m−3
    热传导系数keff/(W·m−1·K−1
    水的比热cw/(J·kg−1·K−1
    固相比热cs/(J·kg−1·K−1
    初始孔隙压力p0/Pa
    土体初始温度T0/℃
    外部温度T/℃
    1.5×10−5
    2.0×10−4
    1.0×105
    6.0×105
    0.3
    1.0
    0.4
    2.07×10−9
    1 000
    2 600
    0.5
    4 200
    800
    1.0×105
    10
    60
    下载: 导出CSV

    表  2  数值计算所使用参数

    Table  2.   Parameters used in the numerical simulation

    参数 取值
    弹性模量E/GPa
    泊松比v
    比奥系数b
    固相密度ρs/(kg·m−3
    固相热容cs/(J·kg−1·K−1
    固相热导率ks/(W·m−1·/K−1
    岩体热膨胀系数αm/K−1
    渗透率增强因子En
    体应变放大因子A
    渗透率模型本构系数n
    断层内聚力c/Pa
    断层内摩擦角θ/(°)
    10
    0.25
    1.0
    2 400
    850
    3.0
    5×10−6
    1 000[34]
    10[24]
    10
    0
    54
    CO2注入速率Minj/(kg·m−1·s−1
    CO2注入温度Tinj/℃
    0.02[19]
    10℃
    毛细管入口压力pec/kPa
    毛管力模型本构系数m
    毛管力模型本构系数l
    咸水残余饱和度srw
    CO2残余饱和度srn
    200[42]
    0.5
    0.5
    0.1
    0
    目标储层孔隙度及渗透率
    盖层孔隙度及渗透率
    上覆含水层孔隙度及渗透率
    基底含水层孔隙度及渗透率
    断层孔隙度及渗透率
    ϕ=0.1;k=1×10−13 m2[19]
    ϕ=0.01;k=1×10−19 m2[19]
    ϕ=0.1;k=1×10−14 m2
    ϕ=0.01;k=1×10−16 m2
    ϕ=0.1;k=1×10−16 m2[19]
    下载: 导出CSV
  • [1] METZ B,DAVIDSON O,DE CONINCK H,et al. IPCC special report on carbon dioxide capture and storage[R]. Cambridge:Cambridge University Press,2005.
    [2] 李阳,张建,范振宁,等. 齐鲁石化−胜利油田CO2长输管道数智化关键技术与创新实践[J]. 天然气工业,2024,44(9):1-12.

    LI Y,ZHANG J,FAN Z N,et al. Key technologies for digital intelligence of long-distance CO2 pipeline and their innovative practices in the Qilu Petrochemical-Shengli Oilfield CO2 pipeline[J]. Natural Gas Industry,2024,44(9):1-12. (in Chinese with English abstract
    [3] 王延欣. 枯竭油气藏储集库储热供暖耦合CO2封存性能分析[J]. 地质科技通报,2024,43(3):12-21.

    WANG Y X. Performance analysis of thermal energy storage for space heating and CO2 sequestration in depleted oil and gas reservoirs[J]. Bulletin of Geological Science and Technology,2024,43(3):12-21. (in Chinese with English abstract
    [4] RUTQVIST J,WU Y S,TSANG C F,et al. A modeling approach for analysis of coupled multiphase fluid flow,heat transfer,and deformation in fractured porous rock[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(4):429-442. doi: 10.1016/S1365-1609(02)00022-9
    [5] MILLER S A,COLLETTINI C,CHIARALUCE L,et al. Aftershocks driven by a high-pressure CO2 source at depth[J]. Nature,2004,427:724-727. doi: 10.1038/nature02251
    [6] RINGROSE P,ATBI M,MASON D,et al. Plume development around Well KB-502 at the In Salah CO2 storage site[J]. First Break,2009,27(1).
    [7] VASCO D,RUCCI A,FERRETTI A,et al. Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide[J]. Geophysical Research Letters,2010,37(3):L03303.
    [8] 郑长远,雷宏武,崔银祥,等. 西宁盆地南部天然CO2泄漏和浅部含水层响应[J]. 地质科技通报,2023,42(6):223-232.

    ZHENG C Y,LEI H W,CUI Y X,et al. Natural CO2 leakage and responses of shallow aquifers in the southern Xining Basin[J]. Bulletin of Geological Science and Technology,2023,42(6):223-232. (in Chinese)
    [9] BACHU S. Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change[J]. Environmental Geology,2003,44(3):277-289. doi: 10.1007/s00254-003-0762-9
    [10] CELIA M A,BACHU S,NORDBOTTEN J M,et al. Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations[J]. Water Resources Research,2015,51(9):6846-6892. doi: 10.1002/2015WR017609
    [11] BIRKHOLZER J T,ZHOU Q L. Basin-scale hydrogeologic impacts of CO2 storage:Capacity and regulatory implications[J]. International Journal of Greenhouse Gas Control,2009,3(6):745-756. doi: 10.1016/j.ijggc.2009.07.002
    [12] PRUESS K. Numerical simulation of CO2 leakage from a geologic disposal reservoir,including transitions from super- to subcritical conditions,and boiling of liquid CO2[J]. SPE Journal,2004,9(2):237-248. doi: 10.2118/86098-PA
    [13] GASDA S E,STEPHANSEN A F,AAVATSMARK I,et al. Upscaled modeling of CO2 injection and migration with coupled thermal processes[J]. Energy Procedia,2013,40:384-391. doi: 10.1016/j.egypro.2013.08.044
    [14] PRUESS K. On CO2 fluid flow and heat transfer behavior in the subsurface,following leakage from a geologic storage reservoir[J]. Environmental Geology,2008,54(8):1677-1686. doi: 10.1007/s00254-007-0945-x
    [15] GAO X Y,YANG S L,SHEN B,et al. Effects of CO2 variable thermophysical properties and phase behavior on CO2 geological storage:A numerical case study[J]. International Journal of Heat and Mass Transfer,2024,221:125073. doi: 10.1016/j.ijheatmasstransfer.2023.125073
    [16] MEGUERDIJIAN S,PAWAR R J,HARP D R,et al. Thermal and solubility effects on fault leakage during geologic carbon storage[J]. International Journal of Greenhouse Gas Control,2022,116:103633. doi: 10.1016/j.ijggc.2022.103633
    [17] SÁEZ-LEIVA F,HURTADO D E,GERBAULT M,et al. Fluid flow migration,rock stress and deformation due to a crustal fault slip in a geothermal system:A poro-elasto-plastic perspective[J]. Earth and Planetary Science Letters,2023,604:117994. doi: 10.1016/j.jpgl.2023.117994
    [18] WU Z J,CUI W J,WENG L,et al. Modeling geothermal heat extraction-induced potential fault activation by developing an FDEM-based THM coupling scheme[J]. Rock Mechanics and Rock Engineering,2023,56(5):3279-3299. doi: 10.1007/s00603-023-03218-1
    [19] CAPPA F,RUTQVIST J. Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2[J]. International Journal of Greenhouse Gas Control,2011,5(2):336-346. doi: 10.1016/j.ijggc.2010.08.005
    [20] 罗亚南,蒋坤卿,黄思浩,等. 地热水回灌耦合CO2地质封存系统安全性分析[J]. 地质科技通报,2024,43(3):59-67.

    LUO Y N,JIANG K Q,HUANG S H,et al. Safety analysis of geothermal water recharge coupled with CO2 geological storage system[J]. Bulletin of Geological Science and Technology,2024,43(3):59-67. (in Chinese with English abstract
    [21] FU P C,SETTGAST R R,HAO Y,et al. The influence of hydraulic fracturing on carbon storage performance[J]. Journal of Geophysical Research(Solid Earth),2017,122(12):9931-9949. doi: 10.1002/2017JB014942
    [22] FU P C,JU X,HUANG J X,et al. Thermo-poroelastic responses of a pressure-driven fracture in a carbon storage reservoir and the implications for injectivity and caprock integrity[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2021,45(6):719-737. doi: 10.1002/nag.3165
    [23] LUU K,SCHOENBALL M,OLDENBURG C M,et al. Coupled hydromechanical modeling of induced seismicity from CO2 injection in the Illinois Basin[J]. Journal of Geophysical Research (Solid Earth),2022,127(5):e2021JB023496. doi: 10.1029/2021JB023496
    [24] KANIN E,GARAGASH I,BORONIN S,et al. Geomechanical risk assessment for CO2 storage in deep saline aquifers[J]. Journal of Rock Mechanics and Geotechnical Engineering,2024,17(4):1986-2008.
    [25] LIAO J X,HU K,MEHMOOD F,et al. Embedded discrete fracture network method for numerical estimation of long-term performance of CO2-EGS under THM coupled framework[J]. Energy,2023,285:128734. doi: 10.1016/j.energy.2023.128734
    [26] MEGUERDIJIAN S,JHA B. Quantification of fault leakage dynamics based on leakage magnitude and dip angle[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2021,45(16):2303-2320. doi: 10.1002/nag.3267
    [27] NORDBOTTEN J M,CELIA M A,BACHU S. Injection and storage of CO2 in deep saline aquifers:Analytical solution for CO2 plume evolution during injection[J]. Transport in Porous Media,2005,58(3):339-360. doi: 10.1007/s11242-004-0670-9
    [28] VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal,1980,44(5):892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    [29] LI S B,LI X,ZHANG D X. A fully coupled thermo-hydro-mechanical,three-dimensional model for hydraulic stimulation treatments[J]. Journal of Natural Gas Science and Engineering,2016,34:64-84. doi: 10.1016/j.jngse.2016.06.046
    [30] LEWIS R W,SHREFLER B A. The finite element method in the static and dynamic deformation and consolidation of porous media[M]. 2nd ed. New York:John Wiley,1998.
    [31] NIELD D A,BEJAN A. Convection in porous media[M]. [S. l.]:Springer Nature,2017.
    [32] SPAN R,WAGNER W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa[J]. Journal of Physical and Chemical Reference Data,1996,25(6):1509-1596. doi: 10.1063/1.555991
    [33] RUTQVIST J,BIRKHOLZER J,CAPPA F,et al. Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis[J]. Energy Conversion and Management,2007,48(6):1798-1807. doi: 10.1016/j.enconman.2007.01.021
    [34] GUGLIELMI Y,ELSWORTH D,CAPPA F,et al. In situ observations on the coupling between hydraulic diffusivity and displacements during fault reactivation in shales[J]. Journal of Geophysical Research(Solid Earth),2015,120(11):7729-7748. doi: 10.1002/2015JB012158
    [35] RUTQVIST J,GRAUPNER B,GUGLIELMI Y,et al. An international model comparison study of controlled fault activation experiments in argillaceous claystone at the Mont Terri Laboratory[J]. International Journal of Rock Mechanics and Mining Sciences,2020,136:104505. doi: 10.1016/j.ijrmms.2020.104505
    [36] SHIPTON Z K,COWIE P A. A conceptual model for the origin of fault damage zone structures in high-porosity sandstone[J]. Journal of Structural Geology,2003,25(3):333-344. doi: 10.1016/S0191-8141(02)00037-8
    [37] GUGLIELMI Y,NUSSBAUM C,CAPPA F,et al. Field-scale fault reactivation experiments by fluid injection highlight aseismic leakage in caprock analogs:Implications for CO2 sequestration[J]. International Journal of Greenhouse Gas Control,2021,111:103471. doi: 10.1016/j.ijggc.2021.103471
    [38] NGUYEN T S,GUGLIELMI Y,GRAUPNER B,et al. Mathematical modelling of fault reactivation induced by water injection[J]. Minerals,2019,9(5):282. doi: 10.3390/min9050282
    [39] CHIN L Y,RAGHAVAN R,THOMAS L K. Fully coupled geomechanics and fluid-flow analysis of wells with stress-dependent permeability[J]. SPE Journal,2000,5(1):32-45. doi: 10.2118/58968-PA
    [40] GUO T K,TANG S J,SUN J,et al. A coupled thermal-hydraulic-mechanical modeling and evaluation of geothermal extraction in the enhanced geothermal system based on analytic hierarchy process and fuzzy comprehensive evaluation[J]. Applied Energy,2020,258:113981. doi: 10.1016/j.apenergy.2019.113981
    [41] 白冰. 岩土颗粒介质非等温−维热固结特性研究[J]. 工程力学,2005,22(5):186-191.

    BAI B. One-dimensional thermal consolidation characteristics of geotechnical media under non-isothermal condition[J]. Engineering Mechanics,2005,22(5):186-191. (in Chinese with English abstract
    [42] CLASS H,EBIGBO A,HELMIG R,et al. A benchmark study on problems related to CO2 storage in geologic formations[J]. Computational Geosciences,2009,13(4):409-434. doi: 10.1007/s10596-009-9146-x
    [43] CONSTANTIN J,PEYAUD J B,VERGÉLY P,et al. Evolution of the structural fault permeability in argillaceous rocks in a polyphased tectonic context[J]. Physics and Chemistry of the Earth(Parts A/B/C),2004,29(1):25-41. doi: 10.1016/j.pce.2003.11.001
    [44] GUDMUNDSSON A. Effects of Young's modulus on fault displacement[J]. Comptes Rendus Geoscience,2004,336(1):85-92. doi: 10.1016/j.crte.2003.09.018
    [45] WILSON J E,CHESTER J S,CHESTER F M. Microfracture analysis of fault growth and wear processes,Punchbowl Fault,San Andreas system,California[J]. Journal of Structural Geology,2003,25(11):1855-1873. doi: 10.1016/S0191-8141(03)00036-1
    [46] RUTQVIST J,RINALDI A P,CAPPA F,et al. Fault activation and induced seismicity in geological carbon storage:Lessons learned from recent modeling studies[J]. Journal of Rock Mechanics and Geotechnical Engineering,2016,8(6):789-804. doi: 10.1016/j.jrmge.2016.09.001
    [47] VILARRASA V,OLIVELLA S,CARRERA J,et al. Long term impacts of cold CO2 injection on the caprock integrity[J]. International Journal of Greenhouse Gas Control,2014,24:1-13. doi: 10.1016/j.ijggc.2014.02.016
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  515
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-19
  • 录用日期:  2025-03-26
  • 修回日期:  2025-03-25
  • 网络出版日期:  2025-03-26

目录

    /

    返回文章
    返回