留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湘东北矿集区井冲铜钴矿床钴的赋存状态

康博 宁钧陶 高卓龙 唐狮象 邓冠鹏 刘文浩 孙华山 江满容 俎波

康博,宁钧陶,高卓龙,等. 湘东北矿集区井冲铜钴矿床钴的赋存状态[J]. 地质科技通报,2025,44(4):167-184 doi: 10.19509/j.cnki.dzkq.tb20240724
引用本文: 康博,宁钧陶,高卓龙,等. 湘东北矿集区井冲铜钴矿床钴的赋存状态[J]. 地质科技通报,2025,44(4):167-184 doi: 10.19509/j.cnki.dzkq.tb20240724
KANG Bo,NING Juntao,GAO Zhuolong,et al. Occurrence state of cobalt in Jingchong copper-cobalt deposit in Northeast Hunan Province, China[J]. Bulletin of Geological Science and Technology,2025,44(4):167-184 doi: 10.19509/j.cnki.dzkq.tb20240724
Citation: KANG Bo,NING Juntao,GAO Zhuolong,et al. Occurrence state of cobalt in Jingchong copper-cobalt deposit in Northeast Hunan Province, China[J]. Bulletin of Geological Science and Technology,2025,44(4):167-184 doi: 10.19509/j.cnki.dzkq.tb20240724

湘东北矿集区井冲铜钴矿床钴的赋存状态

doi: 10.19509/j.cnki.dzkq.tb20240724
基金项目: 湖南省浏阳市鑫磊矿业开发有限公司委托项目“浏阳井冲铜钴矿床三维地质建模及找矿预测”
详细信息
    作者简介:

    康博:E-mail:Kangbo861022@163.com

    通讯作者:

    E-mail:1195516373@qq.com

  • 中图分类号: P642.22

Occurrence state of cobalt in Jingchong copper-cobalt deposit in Northeast Hunan Province, China

More Information
  • 摘要:

    湘东北矿集区井冲铜钴矿床蕴含中型规模的钴资源量,但目前对钴的赋存状态和铜钴成矿关系尚不完全清楚。在详细的坑道调查基础上,结合显微镜鉴定、微区X射线荧光扫描分析(μ-XRF)扫面、背散射电子成像(BSE)及电子探针定量分析,详细划分了成矿阶段,开展了钴的赋存状态和铜钴成矿关系研究,在此基础上提出了钴的综合利用建议。结果表明,井冲铜钴矿床钴的赋存形式包括两大类,第一大类为赋存于粗粒黄铁矿中的不可见钴,钴是以溶解−再沉淀方式进入粗粒黄铁矿内部;第二大类为独立的辉砷钴矿,又细分为4种不同的赋存形式,分别为:以镶边结构或穿插结构产于粗粒黄铁矿边缘或内部的辉砷钴矿、产于粗粒黄铁矿内部多孔状部位边缘的辉砷钴矿、产于粗粒黄铁矿旁边石英中的细粒辉砷钴矿−黄铁矿集合体、产于石英生长环带中定向展布的细粒辉砷钴矿−黄铁矿集合体。从钴资源量贡献来看,粗粒黄铁矿中的不可见钴占据主导地位。此外,在成矿顺序上,钴成矿发生在热液期的中阶段,而铜成矿发生在热液期的晚阶段,铅锌成矿与铜成矿近于同时或稍晚。由于辉砷钴矿含量较少且粒径主体小于30 μm,常规的选矿磨细度难以使其分离,因此钴综合利用的重点应该放在含钴的黄铁矿上。未来研究建议进一步圈定富钴矿体,优化选矿工艺,有望提升硫精矿中的钴品位,以实现钴的综合利用。

     

  • 图 1  浏阳井冲铜钴矿床的大地构造位置示意图(a)及区域地质图(b)(据文献[6]修改)

    Ⅰ. 汨罗断陷盆地;Ⅱ. 幕府山−望湘断隆;Ⅲ. 长沙−平江断陷盆地;Ⅳ. 浏阳−衡东断隆;Ⅴ. 醴陵−攸县断陷盆地

    Figure 1.  Geotectonic location (a) and regional geological map (b) of the Jingchong copper-cobalt deposit in Liuyang city

    图 2  浏阳井冲铜钴矿床矿区地质简图

    Figure 2.  Geological schematic map of the Jingchong copper-cobalt deposit in Liuyang city

    图 3  浏阳井冲铜钴矿床32线剖面图

    Bd. 构造破碎带; K2d. 上白垩统戴家坪组; Gs. 热液蚀变构造角砾岩带; D3s2. 上泥盆统佘田桥组第二岩性段; Hi. 混合岩带; D3s1. 上泥盆统佘田桥组第一岩性段; D2q. 中泥盆统棋梓桥组

    Figure 3.  Line 32 profile of the Jingchong copper-cobalt deposit in Liuyang city

    图 4  浏阳井冲铜钴矿床围岩及矿石的特征

    a. 矿区内F2断裂下盘的花岗质糜棱岩;b. 沿糜棱理分布的绿泥石和黄铁矿化;c. 构造蚀变带上盘的强绿泥石化和硅化蚀变带;d. 7号和8号矿体的总体矿化特征,由石英−粗粒硫化物脉叠加在强硅化蚀变带上形成;e. 7号和8号矿体的矿石特征,由石英和黄铁矿为主的硫化物组成;f. 9号矿体的总体矿化特征,由石英−硫化物叠加在绿泥石化蚀变岩上形成;g. 9号矿体矿石特征,由石英和黄铜矿组成;h. 8号矿体内热液期第3阶段的含黄铜矿石英−硫化物脉穿插第1和2阶段形成的石英−黄铁矿;I. 8号矿体的矿石标本,指示第3阶段的石英−黄铜矿脉穿插第1和第2阶段形成的石英−黄铁矿,导致后者呈角砾产出。stage1~3. 成矿第1~3阶段;Py. 黄铁矿;Qtz. 石英;Chl. 绿泥石;Ccp. 黄铜矿;Sulfide. 硫化物;下同

    Figure 4.  Surrounding rock and ore characteristics of the Jingchong copper-cobalt deposit in Liuyang city

    图 5  井冲铜钴矿床不同成矿阶段矿物组合特征

    a. 花岗质糜棱岩;b. 动力变质作用期形成的细粒黄铁矿(PyⅠ),具有细粒集合体特征,且具有明显的定向变形特征,沿着糜棱岩的糜棱理分布;c. 热液成矿期绿泥石−石英−黄铁矿阶段的绿泥石化和硅化,包含被交代的早期板岩角砾;d. 绿泥石−石英−黄铁矿阶段的粗粒黄铁矿(PyⅡ)包含少量自形−半自形粒状毒砂颗粒,黄铁矿(PyⅡ)被石英−多金属硫化物−碳酸盐阶段的黄铜矿沿裂隙穿插交代;e. 绿泥石−石英−黄铁矿阶段的粗粒黄铁矿(PyⅡ)边缘产出多孔状黄铁矿(PyⅢ-2),其中包含大量石英等透明矿物,且颜色相对于核部(PyⅡ)偏暗,外缘被石英−多金属硫化物−碳酸盐阶段的黄铜矿交代;f. 黄铁矿-辉砷钴矿−石英阶段的自形−半自形粒状微细粒黄铁矿(PyⅢ-1)与辉砷钴矿共生,分布于粗粒黄铁矿(PyⅡ)边缘的石英中;g. 绿泥石−石英−黄铁矿阶段粗粒黄铁矿(PyⅡ)和黄铁矿−辉砷钴矿−石英阶段的辉砷钴矿与石英,可见细粒辉砷钴矿沿半自形粒柱状石英晶体生长环带呈细脉状分布,也可见细粒辉砷钴矿聚集产于粗粒黄铁矿(PyⅡ)边部,以及独立颗粒状辉砷钴矿产于石英中;h. 辉砷钴矿分布于粗粒黄铁矿(PyⅡ)边缘,呈尖角状、镶边状交代粗粒黄铁矿(PyⅡ);i. 热液期第3阶段石英−黄铜矿脉穿插交代热液期第1阶段粗粒黄铁矿(PyⅡ);j. 热液期第3阶段黄铜矿−方解石细脉呈“X”状穿插交代早阶段石英和黄铁矿;k. 热液期第3阶段碳酸盐−多金属硫化物−石英阶段金属硫化物沿对称梳状石英脉中心分布(正交偏光);l. 照片j局部放大(反射光),产于石英中的黄铁矿(PyⅣ)−黄铜矿−闪锌矿−方铅矿共生组合。Py. 黄铁矿;Apy. 毒砂;Cbt. 辉砷钴矿;Sp. 闪锌矿;Po. 磁黄铁矿;Gn. 方铅矿;Rt. 金红石;Pl. 斜长石;Ser. 绢云母;Ab. 钠长石;Cal. 方解石。PyⅢ-1. 辉砷钴矿−石英阶段中的自形细粒黄铁矿;PyⅢ-2. 绿泥石−石英−黄铁矿阶段中的粗粒黄铁矿(PyⅡ)经溶解−再沉淀作用形成的多孔状黄铁矿或富钴环带黄铁矿;Py-Ⅰ. 动力变质作用期形成的细粒黄铁矿;Py-Ⅳ. 产于石英中的黄铁矿;下同

    Figure 5.  Mineral association of different mineralization stages at the Jingchong copper-cobalt deposit

    图 6  井冲铜钴矿床典型含钴黄铁矿中Co元素μ-XRF扫面结果

    a. 大范围粗粒黄铁矿(PyⅡ)集合体,边部的石英中产出细粒的辉砷钴矿;b. 照片a范围的μ-XRF扫面结果,显示黄铁矿(PyⅡ)中出现不均匀分布的富钴环带和不规则状富钴部位;c. 绿泥石−石英−黄铁矿阶段的黄铁矿(PyⅡ)颗粒粗大,结晶形态好,局部受构造应力作用发生破碎呈碎裂状,沿黄铁矿颗粒边缘及破碎裂隙可见明显的多孔状结构;d. 照片c范围的μ-XRF扫面结果,显示Co元素富集于黄铁矿环带中,右下角可见不规则的钴富集部位,图中标注的蓝色线条及圆点为分析剖面I所在位置和分析点位,分析点编号和Co含量分别位于剖面线的左侧和右侧;e. 绿泥石−石英−黄铁矿阶段自形−半自形粒状黄铁矿(PyⅡ)中心为多孔状黄铁矿(PyⅢ-2),含石英等杂质,指示溶解再沉淀作用;f. 照片e范围的μ-XRF扫面结果,显示Co富集于多孔状黄铁矿(PyⅢ-2)的核心,图中标注的蓝色线条及圆点为分析剖面II所在位置和分析点位,分析点编号和Co含量分别位于剖面线的左侧和右侧;g. 绿泥石−石英−黄铁矿阶段,自形−半自形粒状黄铁矿(PyⅡ)集合体呈细小团块状或角砾状,表面干净,无溶解再沉淀作用发生,细小的辉砷钴矿分布于黄铁矿边缘的石英中,或沿石英生长环带呈细脉状分布;h. 照片g范围的μ-XRF扫面结果,黄铁矿(PyⅡ)无明显Co元素异常,细小的辉砷钴矿颗粒分布于石英中,或沿石英结晶生长环带细脉状分布。扫面结果中的富钴部位及辉砷钴矿的面积,均略大于实际面积,这是由μ-XRF扫面最小束径17 μm导致的“马赛克”效应

    Figure 6.  μ-XRF mapping of Co from typical cobalt-rich pyrite at the Jingchong copper-cobalt deposit

    图 7  井冲铜钴矿床典型辉砷钴矿的BSE照片

    a. 黄铁矿−辉砷钴矿的BSE图像,表面洁净的黄铁矿(PyⅡ)内部产出多孔状黄铁矿(PyⅢ-2),包含石英等矿物杂质,指示溶蚀重结晶作用发生,辉砷钴矿沿该多孔状黄铁矿中心的边缘分布;b. 黄铁矿−辉砷钴矿−石英阶段,自形−半自形粒状微细粒黄铁矿(PyⅢ-1)与辉砷钴矿共生,分布于石英中,局部被磁黄铁矿沿其边缘及裂隙交代;c. 微细粒黄铁矿(PyⅢ-1)−辉砷钴矿集合体分布于绿泥石−石英−黄铁矿阶段的粗粒黄铁矿(PyⅡ)边缘的石英中,辉砷钴矿沿粗粒黄铁矿颗粒(PyⅡ)边缘及裂隙呈尖角状交代或镶边状交代,最晚阶段黄铜矿交代粗粒黄铁矿(PyⅡ)及辉砷钴矿,呈包含结构;d. 黄铜矿呈填隙状分布于黄铁矿−辉砷钴矿−石英阶段的石英中,包裹交代细粒辉砷钴矿、细粒黄铁矿(PyⅢ-1)和更早阶段的粗粒黄铁矿(PyⅡ),较粗粒的辉砷钴矿沿着多孔状黄铁矿(PyⅢ-2)边缘分布,细粒辉砷钴矿−黄铁矿(PyⅢ-1)组合在石英的结晶生长环带中定向分布

    Figure 7.  BSE photos of the representative cobaltite in the Jingchong copper-cobalt deposit

    图 8  粗粒黄铁矿中富Co环带(图6d)的Fe-Co图解(a)及Fe-Co+Ni图解(b)

    Figure 8.  Fe-Co diagram (a) and Fe-Co+Ni diagram (b) of the Co-rich zone in the coarse-grained pyrite (Fig. 6d)

    表  1  井冲铜钴矿床矿物生成顺序

    Table  1.   Mineral sequence of the Jingchong copper-cobalt deposit

    下载: 导出CSV

    表  2  井冲铜钴矿床不同世代及特征的黄铁矿电子探针成分

    Table  2.   Electron probe data and characteristics of different generations pyrite at the Jingchong copper-cobalt deposit

    分析点号 黄铁矿世代 黄铁矿特征 S Pb Bi Ag Co Zn Te As Se Fe Ni Cu 总计 分子式
    wB/%
    200-D06-2-1-Py1-3 PyⅠ 细粒黄铁矿集合体 53.02 0.00 0.00 0.00 0.09 0.00 0.00 0.01 0.00 45.93 0.01 0.94 100.00 Fe1.00S2.01
    200-D06-2-1-Py1-4 PyⅠ 53.09 0.00 0.00 0.01 0.10 0.00 0.00 0.14 0.00 46.41 0.00 0.01 99.76 Fe1.00S1.99
    200-D06-2-1-Py-7 PyⅠ 53.05 0.00 0.00 0.01 0.15 0.01 0.01 0.03 0.00 46.18 0.00 0.32 99.75 Fe1.00S2.00
    200-D06-2-1-Py-19 PyⅠ 53.29 0.00 0.00 0.01 0.33 0.01 0.00 0.05 0.01 46.22 0.00 0.00 99.93 Fe1.00S2.01
    50-D06-2-Py-2 PyⅠ 52.57 0.00 0.00 0.03 0.08 0.00 0.01 1.15 0.00 45.38 0.00 0.01 99.24 Fe1.00S2.02
    50-D06-2-Py-5 PyⅠ 52.69 0.00 0.00 0.00 0.26 0.00 0.00 1.01 0.00 45.92 0.03 0.01 99.91 Fe1.00S2.00
    50-D06-2-Py-10 PyⅠ 53.22 0.00 0.00 0.00 0.15 0.00 0.00 0.12 0.00 46.07 0.00 0.00 99.56 Fe1.00S2.01
    0-D03-1-Py-1 PyⅡ 普通粗粒 53.53 0.00 0.00 0.01 0.17 0.00 0.06 0.08 0.00 46.50 0.00 0.00 100.34 Fe1.00S2.00
    0-D03-1-Py-2 PyⅡ 53.70 0.00 0.00 0.01 0.11 0.00 0.00 0.00 0.00 46.38 0.00 0.00 100.20 Fe1.00S2.02
    0-D03-1-Py-3 PyⅡ 53.17 0.00 0.00 0.00 0.15 0.00 0.02 0.12 0.02 46.42 0.00 0.02 99.92 Fe1.00S1.99
    0-D03-1-Py-4 PyⅡ 53.56 0.00 0.00 0.00 0.60 0.01 0.01 0.00 0.03 46.07 0.00 0.00 100.28 Fe1.00S2.02
    0-D03-1-Py-5 PyⅡ 53.16 0.00 0.00 0.01 0.10 0.00 0.00 0.59 0.01 46.21 0.00 0.00 100.08 Fe1.00S2.00
    0-D03-1-Py-25 PyⅡ 碎裂状粗粒,无重结晶 53.25 0.00 0.00 0.00 0.08 0.00 0.00 0.19 0.00 46.44 0.00 0.01 99.96 Fe1.00S2.00
    0-D03-1-Py-26 PyⅡ 53.13 0.00 0.00 0.00 0.16 0.00 0.01 0.75 0.00 46.10 0.02 0.00 100.16 Fe1.00S2.01
    0-D03-1-Py-27 PyⅡ 52.53 0.00 0.00 0.00 0.07 0.00 0.00 1.52 0.00 46.10 0.00 0.00 100.21 Fe1.00S1.98
    0-D03-1-Py-28 PyⅡ 53.73 0.00 0.00 0.00 0.08 0.00 0.00 0.02 0.01 46.59 0.00 0.02 100.44 Fe1.00S2.01
    0-D03-1-Py-29 PyⅡ 53.46 0.00 0.00 0.00 0.14 0.00 0.00 0.12 0.00 46.27 0.00 0.02 100.01 Fe1.00S2.01
    0-D03-1-Py-30 PyⅡ 52.11 0.00 0.00 0.00 0.08 0.00 0.00 2.46 0.00 46.08 0.00 0.00 100.73 Fe1.00S1.97
    200-D06-2-1-Py-1 PyⅡ 粗粒,重结晶 53.18 0.00 0.00 0.00 0.07 0.03 0.02 0.01 0.01 46.24 0.00 0.02 99.56 Fe1.00S2.00
    200-D06-2-1-Py-2 PyⅡ 53.33 0.01 0.00 0.01 0.08 0.01 0.00 0.01 0.00 46.49 0.01 0.03 99.98 Fe1.00S2.00
    200-D06-2-1-Py-5 PyⅡ 51.44 0.00 0.00 0.00 0.08 0.00 0.03 2.78 0.00 45.82 0.00 0.00 100.14 Fe1.00S1.96
    200-D06-2-1-Py-4 PyⅡ 52.72 0.00 0.00 0.00 0.11 0.00 0.00 0.07 0.01 45.56 0.00 0.90 99.37 Fe1.00S2.01
    200-D06-2-1-Py-8 PyⅡ 52.38 0.00 0.00 0.00 0.07 0.00 0.00 1.36 0.00 46.05 0.00 0.00 99.86 Fe1.00S1.98
    200-D06-2-1-Py-9 PyⅡ 51.11 0.00 0.00 0.02 0.07 0.00 0.00 3.22 0.00 45.41 0.03 0.01 99.87 Fe1.00S1.96
    -150-D2-Py-16 PyⅡ 剖面Ⅰ-1,粗粒黄铁矿 53.53 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.03 46.53 0.00 0.00 100.20 Fe1.00S2.00
    -150-D2-Py-15 PyⅡ 剖面Ⅰ-2,粗粒黄铁矿 53.00 0.00 0.00 0.01 0.09 0.00 0.00 0.43 0.03 46.62 0.00 0.00 100.18 Fe1.00S1.98
    -50-D7-Py-13 PyⅡ 剖面Ⅱ-1,粗粒黄铁矿 52.89 0.00 0.00 0.00 0.10 0.00 0.00 0.01 0.00 45.09 0.00 0.00 98.09 Fe1.00S2.04
    -50-D7-Py-14 PyⅡ 剖面Ⅱ-2,粗粒黄铁矿 52.87 0.00 0.00 0.01 0.12 0.00 0.04 0.00 0.00 45.46 0.00 0.00 98.51 Fe1.00S2.03
    0-D03-1-Py-6 PyⅢ-1 辉砷钴矿共生细粒黄铁矿 52.17 0.00 0.00 0.00 0.11 0.01 0.00 1.82 0.00 45.73 0.00 0.02 99.86 Fe1.00S1.99
    0-D03-1-Py-7 PyⅢ-1 53.38 0.00 0.00 0.03 0.32 0.02 0.00 0.50 0.00 46.06 0.00 0.00 100.30 Fe1.00S2.02
    0-D03-1-Py-8 PyⅢ-1 52.09 0.00 0.00 0.03 0.08 0.00 0.00 2.15 0.00 45.75 0.00 0.00 100.10 Fe1.00S1.98
    0-D03-1-Py-9 PyⅢ-1 53.57 0.00 0.00 0.00 0.08 0.00 0.04 0.00 0.00 46.55 0.02 0.00 100.26 Fe1.00S2.00
    0-D03-1-Py-10 PyⅢ-1 53.54 0.01 0.00 0.00 0.13 0.00 0.00 0.00 0.04 46.20 0.01 0.02 99.95 Fe1.00S2.02
    0-D03-1-Py-11 PyⅢ-1 53.45 0.00 0.00 0.01 0.65 0.00 0.00 0.00 0.01 46.00 0.00 0.00 100.11 Fe1.00S2.02
    0-D03-1-Py-12 PyⅢ-1 51.40 0.00 0.00 0.00 0.09 0.00 0.01 3.37 0.00 45.79 0.00 0.00 100.65 Fe1.00S1.96
    0-D03-1-Py-13 PyⅢ-1 53.26 0.00 0.00 0.00 0.19 0.00 0.02 0.00 0.02 46.44 0.00 0.01 99.94 Fe1.00S2.00
    0-D03-1-Py-14 PyⅢ-1 53.69 0.00 0.00 0.01 0.16 0.00 0.00 0.01 0.02 46.00 0.00 0.00 99.89 Fe1.00S2.03
    0-D03-1-Py-15 PyⅢ-1 53.56 0.00 0.00 0.02 0.13 0.00 0.00 0.00 0.03 46.69 0.01 0.01 100.44 Fe1.00S2.00
    0-D03-1-Py-16 PyⅢ-1 52.00 0.00 0.00 0.02 0.16 0.00 0.04 2.30 0.00 45.95 0.01 0.00 100.48 Fe1.00S1.97
    0-D03-1-Py-17 PyⅢ-1 53.76 0.00 0.00 0.01 0.12 0.01 0.02 0.03 0.00 46.59 0.00 0.00 100.54 Fe1.00S2.01
    0-D03-1-Py-18 PyⅢ-1 51.08 0.00 0.00 0.00 0.37 0.02 0.01 3.67 0.00 45.19 0.01 0.02 100.35 Fe1.00S1.97
    -150-D2-Py-14 PyⅢ-2 剖面Ⅰ-3,富钴环带黄铁矿 53.34 0.00 0.00 0.00 1.01 0.00 0.01 0.02 0.04 45.67 0.04 0.00 100.11 Fe1.00S2.03
    -150-D2-Py-13 PyⅢ-2 剖面Ⅰ-4,富钴环带黄铁矿 53.60 0.00 0.00 0.00 0.28 0.00 0.00 0.00 0.01 46.39 0.02 0.00 100.30 Fe1.00S2.01
    -150-D2-Py-12 PyⅢ-2 剖面Ⅰ-5,富钴环带黄铁矿 53.59 0.00 0.00 0.00 3.52 0.00 0.05 0.01 0.02 43.60 0.00 0.00 100.78 Fe1.00S2.14
    -150-D2-Py-11 PyⅢ-2 剖面Ⅰ-6,富钴环带黄铁矿 53.87 0.00 0.00 0.00 0.16 0.00 0.00 0.03 0.00 45.46 1.18 0.09 100.79 Fe1.00S2.06
    -50-D7-Py-15 PyⅢ-2 剖面Ⅱ-3,多孔状黄铁矿 52.98 0.00 0.00 0.01 1.53 0.00 0.00 0.35 0.00 44.82 0.00 0.38 100.08 Fe1.00S2.06
    -50-D7-Py-16 PyⅢ-2 剖面Ⅱ-4,多孔状黄铁矿 52.77 0.00 0.00 0.01 0.44 0.00 0.00 0.00 0.00 45.26 0.02 0.00 98.48 Fe1.00S2.03
    -50-D7-Py-20 PyⅢ-2 剖面Ⅱ-5,多孔状黄铁矿 52.88 0.00 0.00 0.02 0.15 0.01 0.01 0.01 0.04 45.11 0.00 0.00 98.23 Fe1.00S2.04
    sph-1-1-Py-12 PyⅣ 多金属硫化阶段黄铁矿 53.15 0.00 0.00 0.00 0.07 0.03 0.02 0.79 0.00 46.22 0.00 0.02 100.29 Fe1.00S2.00
    sph-1-1-Py-13 PyⅣ 53.34 0.00 0.00 0.00 0.10 0.04 0.00 0.61 0.00 46.31 0.00 0.01 100.42 Fe1.00S2.01
    sph-1-1-Py-14 PyⅣ 53.45 0.00 0.00 0.00 0.21 0.27 0.00 0.50 0.00 46.07 0.10 0.00 100.61 Fe1.00S2.02
    sph-1-1-Py-15 PyⅣ 52.82 0.00 0.00 0.00 0.09 0.07 0.03 1.66 0.00 46.18 0.00 0.01 100.85 Fe1.00S1.99
    注:分子式计算均以Fe原子数为1进行了标准化。
    下载: 导出CSV

    表  3  井冲铜钴矿床毒砂电子探针成分

    Table  3.   Electron probe composition of arsenopyrite at the Jingchong copper-cobalt deposit

    分析点号 S Pb Bi Ag Co Zn Te As Se Fe Ni Cu 总计 分子式
    wB/%
    50-D06-2-Apy-1 21.12 0.04 0.30 0.00 0.08 0.00 0.00 43.14 0.00 34.20 0.00 0.01 98.89 Fe1.00As0.94S1.08
    50-D06-2-Apy-2 20.82 0.00 0.00 0.01 0.09 0.00 0.00 43.63 0.00 34.19 0.00 0.02 98.76 Fe1.00As0.95S1.06
    50-D06-2-Apy-3 20.98 0.10 0.00 0.00 1.95 0.00 0.00 43.86 0.00 32.46 0.28 0.02 99.65 Fe1.00As1.01S1.13
    50-D06-2-Apy-4 21.75 0.00 0.00 0.00 0.12 0.00 0.00 42.35 0.00 34.43 0.00 0.00 98.65 Fe1.00As0.92S1.10
    50-D02-Apy-1 20.09 0.00 0.00 0.01 0.09 0.01 0.00 46.86 0.00 33.77 0.00 0.06 100.89 Fe1.00As1.03S1.04
    50-D02-Apy-2 21.46 0.01 0.00 0.00 0.08 0.00 0.00 44.06 0.00 34.14 0.00 0.00 99.74 Fe1.00As0.96S1.09
    50-D02-Apy-3 22.80 0.02 0.00 0.03 0.09 0.02 0.03 42.88 0.00 34.71 0.00 0.02 100.60 Fe1.00As0.92S1.14
    50-D02-Apy-4 19.69 0.06 0.00 0.00 0.10 0.00 0.00 46.88 0.00 34.11 0.00 0.00 100.85 Fe1.00As1.02S1.01
    注:分子式计算均以Fe原子数为1进行了标准化。
    下载: 导出CSV

    表  4  浏阳井冲铜钴矿床辉砷钴矿电子探针成分

    Table  4.   Electron probe composition of cobaltite at the Jingchong copper-cobalt deposit in Liuyang City

    分析点号 S Pb Bi Ag Co Zn Te As Se Fe Ni Cu 总计 分子式
    wB/%
    100-D011-Co-2 20.64 0.00 0.00 0.00 36.01 0.00 0.00 40.82 0.24 0.95 0.20 0.00 98.86 Co1.00Fe0.03As0.89S1.05
    100-D011-Co-3 20.17 0.00 0.00 0.00 33.79 0.00 0.04 41.08 0.24 2.84 0.15 0.00 98.32 Co1.00Fe0.09As0.96S1.10
    100-D011-Co-5 19.92 0.00 0.00 0.01 34.53 0.00 0.02 41.23 0.21 2.04 0.16 0.00 98.11 Co1.00Fe0.06As0.94S1.06
    0-D03-1-Co-8 18.37 0.00 0.00 0.00 31.70 0.00 0.00 43.78 0.21 1.67 2.44 0.00 98.18 Co1.00Fe0.06As1.09S1.07
    50-D03-2-Co-1 19.27 0.00 0.00 0.00 33.22 0.00 0.01 43.65 0.26 2.03 0.06 0.00 98.50 Co1.00Fe0.06As1.03S1.07
    200-D06-2-1-Co-4 20.64 0.00 0.41 0.02 32.66 0.02 0.05 42.61 0.16 2.55 0.64 0.00 99.74 Co1.00Fe0.08As1.03S1.16
    200-D06-2-1-Co-5 20.85 0.00 0.00 0.00 30.52 0.00 0.01 41.71 0.21 4.74 0.49 0.00 98.53 Co1.00Fe0.03As0.89S1.12
    200-D06-2-1-Co-6 20.46 0.00 0.00 0.00 32.58 0.00 0.00 42.32 0.24 3.19 0.32 0.00 99.11 Co1.00Fe0.03As0.89S1.13
    200-D06-2-1-Co-7 20.65 0.02 0.00 0.00 31.39 0.00 0.00 42.19 0.22 5.51 0.16 0.00 100.15 Co1.00Fe0.03As0.89S1.14
    注:分子式计算均以Co原子数为1进行了标准化。
    下载: 导出CSV

    表  5  浏阳井冲铜钴矿床黄铜矿电子探针成分

    Table  5.   Electron probe composition of chalcopyrite at the Jingchong copper-cobalt deposit in Liuyang City

    分析点号 S Pb Bi Ag Co Zn Te As Se Fe Ni Cu 总计 分子式
    wB/%
    0-D07-1-Ccp-2 33.46 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.00 30.43 0.00 34.36 98.27 Cu1.00Fe1.01S1.93
    0-D07-1-Ccp-3 33.87 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 30.35 0.00 34.47 98.71 Cu1.00Fe1.00S1.95
    0-D07-1-Ccp-4 33.93 0.00 0.00 0.03 0.00 0.02 0.00 0.00 0.00 30.40 0.00 34.43 98.81 Cu1.00Fe1.00S1.95
    0-D03-1-Ccp-1 34.23 0.01 0.00 0.01 0.00 0.02 0.00 0.00 0.00 30.35 0.00 34.70 99.30 Cu1.00Fe1.00S1.95
    0-D03-1-Ccp-2 33.45 0.06 0.00 0.00 0.00 0.03 0.00 0.00 0.02 30.01 0.00 34.83 98.40 Cu1.00Fe0.98S1.90
    50-D03-2-Ccp-1 34.06 0.04 0.00 0.02 0.00 0.03 0.05 0.03 0.00 30.04 0.02 34.39 98.67 Cu1.00Fe0.99S1.96
    -100-D5-2-Ccp-1 33.97 0.06 0.00 0.05 0.04 0.02 0.04 0.01 0.04 30.55 0.00 34.68 99.43 Cu1.00Fe1.00S1.94
    -100-D5-2-Ccp-2 34.08 0.00 0.00 0.00 0.00 0.01 0.00 0.03 0.05 30.33 0.00 34.83 99.33 Cu1.00Fe0.99S1.94
    注:分子式计算均以Cu原子数为1进行了标准化。
    下载: 导出CSV
  • [1] U.S. GEOLOGICAL SURVEY. Mineral commodity summaries[R]. Reston:Virginia,2023.
    [2] 付浩,王加昇,李金龙,等. 全球钴矿资源时空分布及成因类型[J]. 地质科技通报,2024,43(1):1-22.

    FU H,WANG J S,LI J L,et al. Spatiotemporal distribution and genesis types of global cobalt resources[J]. Bulletin of Geological Science and Technology,2024,43(1):1-22. (in Chinese with English abstract
    [3] 段俊,徐刚,汤中立,等. 我国钴资源产业发展现状、问题与对策[J]. 中国工程科学,2024,26(3):98-107. doi: 10.15302/J-SSCAE-2024.03.009

    DUAN J,XU G,TANG Z L,et al. Analysis of development of China's cobalt industry:Current status,problems and countermeasures[J]. Strategic Study of CAE,2024,26(3):98-107. (in Chinese with English abstract doi: 10.15302/J-SSCAE-2024.03.009
    [4] 海连富,张晓军,孙永亮,等. 宁夏卫宁北山地区伴生钴矿床地质特征、控矿因素及找矿方向[J]. 地质科技通报,2024,43(5):55-69.

    HAI L F,ZHANG X J,SUN Y L,et al. Geological characteristics,controlling factors and prospecting directions of a ssociated cobalt deposits in the Weiningbeishan area,Ningxia[J]. Bulletin of Geological Science and Technology,2024,43(5):55-69. (in Chinese with English abstract
    [5] 许德如,王智琳,聂逢君,等. 中国钴矿资源现状与关键科学问题[J]. 中国科学基金,2019,33(2):125-132.

    XU D R,WANG Z L,NIE F J,et al. Cobalt resources in China:Current research status and key scientific issues[J]. Bulletin of National Natural Science Foundation of China,2019,33(2):125-132. (in Chinese with English abstract
    [6] 许德如,王力,李鹏春,等. 湘东北地区连云山花岗岩的成因及地球动力学暗示[J]. 岩石学报,2009,25(5):1056-1078.

    XU D R,WANG L,LI P C,et al. Petrogenesis of the Lianyunshan granites in northeastern Hunan Province,South China,and its geodynamic implications[J]. Acta Petrologica Sinica,2009,25(5):1056-1078. (in Chinese with English abstract
    [7] 陈剑锋,黄建中,文春华,等. 浅论湘东北地区与燕山期花岗岩有关矿床的成矿系列与找矿方向[J]. 地球学报,2023,44(5):815-833. doi: 10.3975/cagsb.2023.012901

    CHEN J F,HUANG J Z,WEN C H,et al. A preliminary study of metallogenic series and its prospecting direction related to Yanshannian granites in northeastern of Hunan Province[J]. Acta Geoscientica Sinica,2023,44(5):815-833. (in Chinese with English abstract doi: 10.3975/cagsb.2023.012901
    [8] 周怡湘,程巨能. 湘东北思村−砰山剥离断层特征及控矿研究[J]. 大地构造与成矿学,1999,23(4):334-344. doi: 10.3969/j.issn.1001-1552.1999.04.007

    ZHOU Y X,CHENG J N. The Sicun-Pengshan denudational fault and its control on ore mineralization,northeastern Hunan,China[J]. Geotectonica et Metallogenia,1999,23(4):334-344. (in Chinese with English abstract doi: 10.3969/j.issn.1001-1552.1999.04.007
    [9] 易祖水,罗小亚,周东红,等. 浏阳市井冲钴铜多金属矿床地质特征及成因浅析[J]. 华南地质与矿产,2010,26(3):12-18.

    YI Z S,LUO X Y,ZHOU D H,et al. Geological characteristics and genesis of Jinchong Co-Cu polymetal deposit,Liuyang,Hunan Province[J]. Geology and Mineral Resources of South China,2010,26(3):12-18. (in Chinese with English abstract
    [10] 周岳强,许德如,董国军,等. 湖南长沙−平江断裂带构造演化及其控矿作用[J]. 东华理工大学学报(自然科学版),2019,42(3):201-208.

    ZHOU Y Q,XU D R,DONG G J,et al. Structural evolution of the Changsha-Pingjiang fault zone and its controlling on mineralization[J]. Journal of East China University of Technology (Natural Science),2019,42(3):201-208. (in Chinese with English abstract
    [11] 宁钧陶,黄宝亮,董国军,等. 湘东北热液型钴矿床中含钴矿物特征及其对成矿的指示意义[J]. 黄金科学技术,2023,31(4):531-545.

    NING J T,HUANG B L,DONG G J,et al. Characteristics of cobalt-bearing minerals in hydrothermal cobalt deposits in northeastern Hunan Province and their implication for mineralization[J]. Gold Science and Technology,2023,31(4):531-545. (in Chinese with English abstract
    [12] 王智琳,伍杨,许德如,等. 湘东北长沙−平江断裂带关键金属钴的赋存状态与成矿规律[J]. 黄金科学技术,2020,28(6):779-785.

    WANG Z L,WU Y,XU D R,et al. Occurrence state and ore-forming regularity of critical metal cobalt in the Changsha-Pingjiang fault zone,northeastern Hunan Province[J]. Gold Science and Technology,2020,28(6):779-785. (in Chinese with English abstract
    [13] ZOU S H,ZOU F H,NING J T,et al. A stand-alone Co mineral deposit in northeastern Hunan Province,South China:Its timing,origin of ore fluids and metal Co,and geodynamic setting[J]. Ore Geology Reviews,2018,92:42-60. doi: 10.1016/j.oregeorev.2017.11.008
    [14] PENG E K,KOLB J,WALTER B F,et al. New insights on the formation of the Jingchong Cu-co-Pb-Zn deposit,South China:Evidence from sphalerite mineralogy and muscovite 40Ar-39Ar dating[J]. Ore Geology Reviews,2023,162:105667. doi: 10.1016/j.oregeorev.2023.105667
    [15] 陕亮,王川,康博,等. 江南造山带中段井冲钴铜矿床成矿时代、流体性质与成矿模式[J]. 大地构造与成矿学,2024,48(6):1299-1314.

    SHAN L,WANG C,KANG B,et al. Mineralization age,fluid properties,and metallogenic model of the Jingchong Co-Cu deposit in the central Jiangnan Orogen,South China[J]. Geotectonica et Metallogenia,2024,48(6):1299-1314. (in Chinese with English abstract
    [16] 陕亮,黄啸坤,王川,等. 湘东北地区井冲钴铜矿床中辉砷钴矿的发现、成因及开发利用价值[J]. 中国地质,2022,49(5):1705-1707. doi: 10.12029/gc20220525

    SHAN L,HUANG X K,WANG C,et al. Discovery of cobaltite in the Jingchong Co-Cu deposit,northeastern Hunan Province,South China:Implications for ore genesis and exploration[J]. Geology in China,2022,49(5):1705-1707. (in Chinese with English abstract doi: 10.12029/gc20220525
    [17] WANG Z L,WANG Y F,PENG E K,et al. Micro-textural and chemical fingerprints of hydrothermal cobalt enrichment in the Jingchong Co-Cu polymetallic deposit,South China[J]. Ore Geology Reviews,2022,142:104721. doi: 10.1016/j.oregeorev.2022.104721
    [18] ZHAO J H,ZHOU M F,YAN D P,et al. Reappraisal of the ages of Neoproterozoic strata in South China:No connection with the grenvillian orogeny[J]. 2011,39(4):299-302.
    [19] 王孝磊,周金城,陈昕,等. 江南造山带的形成与演化[J]. 矿物岩石地球化学通报,2017,36(5):714-735. doi: 10.3969/j.issn.1007-2802.2017.05.003

    WANG X L,ZHOU J C,CHEN X,et al. Formation and evolution of the Jiangnan Orogen[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2017,36(5):714-735. (in Chinese with English abstract doi: 10.3969/j.issn.1007-2802.2017.05.003
    [20] 许德如,邓腾,董国军,等. 湘东北连云山二云母二长花岗岩的年代学和地球化学特征:对岩浆成因和成矿地球动力学背景的启示[J]. 地学前缘,2017,24(2):104-122.

    XU D R,DENG T,DONG G J,et al. Zircon U-Pb geochronological and geochemical characteristics of the Lianyunshan two-mica monzogranites in northeastern Hunan Province:Implications for petrogenesis and tectonic setting associated with polymetallic mineralization[J]. Earth Science Frontiers,2017,24(2):104-122. (in Chinese with English abstract
    [21] 张文山. 湘东北长沙−平江断裂动力变质带的构造及地球化学特征[J]. 大地构造与成矿学,1991,15(2):100-109.

    ZHANG W S. Structural and geochemical features of the Changsha-Pingjiang fracture dynamic metamorphism zone in NE Hunan Province,China[J]. Geotectonica et Metallogenia,1991,15(2):100-109. (in Chinese with English abstract
    [22] 高林志,陈峻,丁孝忠,等. 湘东北岳阳地区冷家溪群和板溪群凝灰岩SHRIMP锆石U-Pb年龄:对武陵运动的制约[J]. 地质通报,2011,30(7):1001-1008. doi: 10.3969/j.issn.1671-2552.2011.07.001

    GAO L Z,CHEN J,DING X Z,et al. Zircon SHRIMP U-Pb dating of the tuff bed of Lengjiaxi and Banxi Groups,northeastern Hunan:Constraints on the Wuling Movement[J]. Geological Bulletin of China,2011,30(7):1001-1008. (in Chinese with English abstract doi: 10.3969/j.issn.1671-2552.2011.07.001
    [23] 杨雪,张玉芝,崔翔,等. 湘东北新元古代冷家溪群沉积岩的地球化学特征和碎屑锆石U-Pb年代学[J]. 地球科学,2020,45(9):3461-3474.

    YANG X,ZHANG Y Z,CUI X,et al. Geochemistry and detrital zircon U-Pb ages of sedimentary rocks from Neoproterozoic Lengjiaxi Group in NE Hunan Province[J]. Earth Science,2020,45(9):3461-3474. (in Chinese with English abstract
    [24] WANG J Q,SHU L S,SANTOSH M. Petrogenesis and tectonic evolution of Lianyunshan complex,South China:Insights on Neoproterozoic and Late Mesozoic tectonic evolution of the central Jiangnan Orogen[J]. Gondwana Research,2016,39:114-130. doi: 10.1016/j.gr.2016.06.015
    [25] JI W B,LIN W,FAURE M,et al. Origin of the Late Jurassic to Early Cretaceous peraluminous granitoids in the northeastern Hunan Province (Middle Yangtze region),South China:Geodynamic implications for the Paleo-Pacific subduction[J]. Journal of Asian Earth Sciences,2017,141:174-193. doi: 10.1016/j.jseaes.2016.07.005
    [26] 张鲲,徐德明,宁钧陶,等. 湘东北井冲钴铜矿区连云山花岗岩的岩石成因:锆石U-Pb年龄、岩石地球化学和Hf同位素约束[J]. 岩石矿物学杂志,2019,38(1):21-33. doi: 10.3969/j.issn.1000-6524.2019.01.002

    ZHANG K,XU D M,NING J T,et al. Petrogenisis of the Lianyunshan granites in Jingchong Co-Cu polymetallic deposit in northeastern Hunan:Constraints from zircon U-Pb chronology,petrochemistry and Hf isotope[J]. Acta Petrologica et Mineralogica,2019,38(1):21-33. (in Chinese with English abstract doi: 10.3969/j.issn.1000-6524.2019.01.002
    [27] DENG T,XU D R,CHI G X,et al. Geology,geochronology,geochemistry and ore genesis of the Wangu gold deposit in northeastern Hunan Province,Jiangnan Orogen,South China[J]. Ore Geology Reviews,2017,88:619-637. doi: 10.1016/j.oregeorev.2017.01.012
    [28] DENG T,XU D R,CHI G X,et al. Caledonian (Early Paleozoic) veins overprinted by Yanshanian (Late Mesozoic) gold mineralization in the Jiangnan Orogen:A case study on gold deposits in northeastern Hunan,South China[J]. Ore Geology Reviews,2020,124:103586. doi: 10.1016/j.oregeorev.2020.103586
    [29] XU D R,DENG T,CHI G X,et al. Gold mineralization in the Jiangnan Orogenic Belt of South China:Geological,geochemical and geochronological characteristics,ore deposit-type and geodynamic setting[J]. Ore Geology Reviews,2017,88:565-618. doi: 10.1016/j.oregeorev.2017.02.004
    [30] XU J W,LAI J Q,LI B,et al. Tungsten mineralization during slab subduction:A case study from the Huxingshan deposit in northeastern Hunan Province,South China[J]. Ore Geology Reviews,2020,124:103657. doi: 10.1016/j.oregeorev.2020.103657
    [31] WEN C H,SHAO Y J,XIONG Y Q,et al. Ore genesis of the Baishawo Be-Li-Nb-Ta deposit in the northeast Hunan Province,South China:Evidence from geological,geochemical,and U-Pb and Re-Os geochronologic data[J]. Ore Geology Reviews,2021,129:103895. doi: 10.1016/j.oregeorev.2020.103895
    [32] YU D S,XU D R,ZHAO Z X,et al. Genesis of the Taolin Pb-Zn deposit in northeastern Hunan Province,South China:Constraints from trace elements and oxygen-sulfur-lead isotopes of the hydrothermal minerals[J]. Mineralium Deposita,2020,55(7):1467-1488. doi: 10.1007/s00126-019-00947-8
    [33] YU D S,XU D R,WANG Z L,et al. Trace element geochemistry and O-S-Pb-He-Ar isotopic systematics of the Lishan Pb-Zn-Cu hydrothermal deposit,NE Hunan,South China[J]. Ore Geology Reviews,2021,133:104091. doi: 10.1016/j.oregeorev.2021.104091
    [34] 杨紫文,李艳军,周豹,等. 幕阜山复式花岗岩体西北缘伟晶岩中石榴子石成因及对Nb-Ta成矿的制约:成矿和未成矿微斜长石伟晶岩对比[J]. 地质科技通报,2025,44(2):238-256.

    YANG Z W,LI Y J,ZHOU B,et al. Genesis of garnet in pegmatites from the northwestern margin of the Mufushan composite granite pluton and its constraints on Nb-Ta mineralization:Comparison from mineralized and unmineralized pegmatites[J]. Bulletin of Geological Science and Technology,2025,44(2):238-256. (in Chinese with English abstract
    [35] ZU B,ZHANG H,CHI G X,et al. Generation of Cu-Au skarn mineralization by mafic magma recharge:Insights from the Bozymchak deposit in the Chatkal-Kurama region,Kyrgyzstan,West Tianshan[J]. 2024,137(5/6):1964-1984.
    [36] ZHANG R X,YANG S Y. A mathematical model for determining carbon coating thickness and its application in electron probe microanalysis[J]. Microscopy and Microanalysis,2016,22(6):1374-1380. doi: 10.1017/S143192761601182X
    [37] YANG S Y. Electron probe microanalysis in geosciences:Analytical procedures and recent advances[J]. Atomic Spectroscopy,2022,43(2):186-200.
    [38] WANG Z L,XU D R,CHI G X,et al. Mineralogical and isotopic constraints on the genesis of the Jingchong Co-Cu polymetallic ore deposit in northeastern Hunan Province,South China[J]. Ore Geology Reviews,2017,88:638-654. doi: 10.1016/j.oregeorev.2017.02.011
    [39] PUTNIS A. Mineral replacement reactions:From macroscopic observations to microscopic mechanisms[J]. Mineralogical Magazine, 2002,66(5):689-708.
    [40] PUTNIS A. Mineral replacement reactions[J]. Reviews in Mineralogy and Geochemistry,2009,70(1):87-124. doi: 10.2138/rmg.2009.70.3
    [41] 胡浩,段壮,LUO Y,等. 鄂东程潮铁矿床磁铁矿的微量元素组成及其矿床成因意义[J]. 岩石学报,2014,30(5):1292-1306.

    HU H,DUAN Z,LUO Y,et al. Trace element systematics of magnetite from the Chengchao iron deposit in the Daye district:A laser ablation ICP-MS study and insights into ore genesis[J]. Acta Petrologica Sinica,2014,30(5):1292-1306. (in Chinese with English abstract
    [42] CLARK C,GRGURIC B,MUMM A S. Genetic implications of pyrite chemistry from the Palaeoproterozoic Olary Domain and overlying Neoproterozoic Adelaidean sequences,northeastern South Australia[J]. Ore Geology Reviews,2004,25(3/4):237-257.
    [43] REICH M,SIMON A C,DEDITIUS A,et al. Trace element signature of pyrite from the Los Colorados iron oxide-apatite (ioa) deposit,Chile:A missing link between Andean ioa and iron oxide copper-gold systems?[J]. Economic Geology 2016,111(3):743-761.
    [44] GEISLER T,PIDGEON R T,KURTZ R,et al. Experimental hydrothermal alteration of partially metamict zircon[J]. American Miner alogist,2003,88(10):1496-1513.
    [45] ALTREE-WILLIAMS A,PRING A,NGOTHAI Y,et al. Textural and compositional complexities resulting from coupled dissolution-reprecipitation reactions in geomaterials[J]. Earth-Science Reviews,2015,150:628-651. doi: 10.1016/j.earscirev.2015.08.013
    [46] 刘萌,王智琳,许德如,等. 湖南井冲钴铜多金属矿床绿泥石、黄铁矿和黄铜矿的矿物学特征及其成矿指示意义[J]. 大地构造与成矿学,2018,42(5):862-879.

    LIU M,WANG Z L,XU D R,et al. Mineralogy of chlorite,pyrite and chalcopyrite in the Jingchong Co-Cu polymetallic deposit in northeastern Hunan Province,South China:Implications for ore genesis[J]. Geotectonica et Metallogenia,2018,42(5):862-879. (in Chinese with English abstract
    [47] VASYUKOVA O V,WILLIAMS-JONES A E. Constraints on the genesis of cobalt deposits:Part Ⅱ. Applications to natural systems[J]. Economic Geology. 2022,117(3):529-544.
    [48] SU H M,JIANG S Y,CHI G X,et al. Formation of the giant Luiswishi Cu-Co deposit in the Central African copper belt by Neoproterozoic syn-sedimentary-diagenetic processes overprinted by Pan-African orogenic mineralization events[J]. Precambrian Research,2024,402:107299. doi: 10.1016/j.precamres.2024.107299
    [49] 王慧宁,刘福来,朱志勇,等. 吉林省大横路铜钴矿复杂的沉积−变质变形−热液作用演化过程及其对钴的赋存状态和富集成矿的制约[J]. 岩石学报,2023,39(4):998-1018. doi: 10.18654/1000-0569/2023.04.04

    WANG H N,LIU F L,ZHU Z Y,et al. Complex evolution of the sedimentation,metamorphism-deformation and hydrothermal processes and their constraints on the occurrence,enrichment and mineralization of Co in the Dahenglu Cu-Co deposit,Jilin Province[J]. Acta Petrologica Sinica,2023,39(4):998-1018. (in Chinese with English abstract doi: 10.18654/1000-0569/2023.04.04
    [50] 湖南省地质矿产勘查开发局四零二队. 湖南省浏阳市井冲矿区潭玲钴铜多金属矿详查报告[R]. 长沙:出版者不详,2008.

    HUNAN PROVINCIAL GEOLOGICAL AND MINERAL DEVELOPMENT BUREAU TEAM 402. Detailed investigation report of Tanling cobalt-copper polymetallic deposit in Jingchong mining area,Liuyang City,Hunan Province[R]. Changsha:[S. n. ],2008. (in Chinese)
    [51] 金吉梅. 四川某铜多金属矿石优先浮选工艺试验研究[J]. 有色冶金设计与研究,2017,38(3):11-14. doi: 10.3969/j.issn.1004-4345.2017.03.004

    JIN J M. Experimental study on selective flotation process of a certain copper polymetallic ore in Sichuan[J]. Nonferrous Metals Engineering & Research,2017,38(3):11-14. (in Chinese with English abstract doi: 10.3969/j.issn.1004-4345.2017.03.004
    [52] 严伟平,陈晓青,周家云,等. 提高拉拉铜矿资源综合利用率的选矿新工艺研究[J]. 矿产综合利用,2016(6):49-54.

    YAN W P,CHEN X Q,ZHOU J Y,et al. Research on new mineral processing technology for improving the comprehensive utilization rate of the resources of the lala copper mine[J]. Multipurpose Utilization of Mineral Resources,2016(6):49-54. (in Chinese with English abstract
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  216
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-26
  • 录用日期:  2025-04-14
  • 修回日期:  2025-04-12
  • 网络出版日期:  2025-06-24

目录

    /

    返回文章
    返回