Evolution of continental weathering and upwelling in Early Silurian and the implications for the organic matter accumulations in the black shales of Longmaxi Formation in the Upper Yangtze Block of South China
-
摘要:
关于华南扬子地区龙马溪组黑色页岩中的有机质富集机制一直存在争议,为揭示古气候条件转变背景下大陆风化作用和上升洋流的演化特征,并探究该地区沉积物中有机质的富集主控因素,以四川省布拖地区布地1井龙马溪组为研究对象,采用地球化学方法重建了早志留世古气候和古海洋水化学条件。研究表明,龙马溪组沉积期化学风化作用展现出逐渐增强的趋势,而水动力条件总体处于停滞局限的状态。龙马溪组早期伴随赫南特冰期的结束,全球气候变暖,冰盖消融促进了河流径流量增加,进而增强了物理剥蚀速率和化学风化速率,并导致了该时期表层海洋较高的生物生产力。此外,龙马溪组富有机质黑色页岩沉积存在时间和空间序列上的差异性。在时间序列上主要受到强烈气候波动下的大陆风化作用演化影响,即龙马溪组早期强烈的化学风化速率促进了有机质的富集;而在空间尺度上与扬子地区的上升洋流强度有关,即在扬子海外陆棚地区强烈的上升洋流促进了有机质和有机硅的富集。本研究揭示了研究区早志留世重大地质事件驱动下的有机质富集机制,总结了华南扬子地区空间上龙马溪组富有机质页岩的差异发育模式,可为华南龙马溪组页岩中有机质富集模式提供新的视角。
Abstract:The deposition mechanism of organic-rich shales in the Lower Silurian Longmaxi Formation is still under debate.
Objective In order to reconstruct the climatic and oceanic environments during the Early Silurian, and reveal the influence of continental weathering and upwelling on the organic matter accumulation,
Methods this study presents the geochemical compositions of the Lower Silurian succession in the BD 1 Well of the Upper Yangtze Platform.
Results The results show that despite persistently restricted watermass conditions, the Longmaxi period experienced a transition from weak chemical weathering intensity in the early period to intense chemical weathering in the late period. During the early stage of Longmaxi Formation deposition, coinciding with the termination of the Hirnantian glaciation, global climatic warming and associated deglaciation induced a significant increase in fluvial runoff. This amplified runoff intensified continental weathering and erosion rates, concurrently elevating primary productivity. The deposition of organic-rich black shale within the Longmaxi Formation exhibits distinct spatiotemporal heterogeneity. Temporally, the evolution of continental weathering was modulated by pronounced climatic fluctuations. Only episodes of intense weathering facilitated the enrichment of organic matter within the Lower Longmaxi Formation. Spatially, across the Yangtze Sea paleoshelf, organic matter and biogenic silica enrichment was primarily driven by strong upwelling dynamics specific to the outer shelf setting, contrasting with the inner shelf regions.
Conclusion This study reveals the mechanisms of organic matter enrichment in the study area during the Early Silurian. It summarizes the diverse spatial development patterns of organic-rich shale in the Longmaxi Formation of the Yangtze Block of South China, providing new perspectives for understanding organic matter enrichment mechanisms within the Longmaxi Formation.
-
Key words:
- continental weathering /
- upwelling /
- Longmaxi Formation /
- organic matter /
- black shale /
- Yangtze Block
-
图 1 华南地区的晚奥陶世古地理图[18-19](a);扬子陆架海古地理图[20]和所研究的钻孔(布地-1井(本研究),YY-1井[21],钻井A[12],EFD1井[22],YY-2井[23],YD-1[12],Qianqian-1[24],Guanyinqiao[25],Cangling[26])(b)及布地-1井地层剖面图(c)
Figure 1. Late Ordovician paleogeographic maps of South China (a) well paleogeographic maps of the Yangtze Shelf Sea and the studied boreholes (b) and strata profile of Well BD-1 (c)
图 2 布地-1井在A-CN-K图上的分析样品图(a),CIAcorr与CIA(b)、CIW与CIA(c)、Al/Si与CIA(d)相关性图
A. Al2O3;CN. CaO*+Na2O;K. K2O;Pl. 斜长石;Kfs. 钾长石;Ilt. 伊利石;Ms. 白云母;Sme. 蒙脱石;Kln. 高岭石;Gbs. 三水铝石;Chl. 绿泥石;To. 方钠石;Gd. 花岗闪长岩;Gr. 花岗岩;f线. 钾在沉积物中的成岩作用;e线. 预测的风化趋势
Figure 2. A-CN-K diagram (a), CIAcorr-CIA (b), CIW-CIA (c), and Al/Si-CIA (d) plots of samples obtained from Well BD-1
图 9 古生产力指标Si过量(a)、Ba过量(b)、CuEF(c)与CIAcorr相关性图及氧化还原条件指标Corg/P与古生产力指标Ba过量(d)、CuEF(e)相关性图和氧化还原条件指标Ni/Co与古生产力指标Ba过量(f)相关性图
Figure 9. Cross plots of ancient productivity proxies of Si过量 (a), Ba过量 (b), CuEF (c) versus CIAcorr, cross plots of redox condition proxy of Corg/P versus ancient productivity proxy Ba过量 (d), CuEF (e), cross plots of redox condition proxy of Ni/Co versus ancient productivity proxy of Ba过量 (f)
-
[1] 邹才能,邱振. 中国非常规油气沉积学新进展:“非常规油气沉积学” 专辑前言[J]. 沉积学报,2021,39(1):1-9.ZOU C N,QIU Z. Preface:New advances in unconventional petroleum sedimentology in China[J]. Acta Sedimentologica Sinica,2021,39(1):1-9. (in Chinese with English abstract [2] 董大忠,高世葵,黄金亮,等. 论四川盆地页岩气资源勘探开发前景[J]. 天然气工业,2014,34(12):1-15.DONG D Z,GAO S K,HUANG J L,et al. A discussion on the shale gas exploration & development prospect in the Sichuan Basin[J]. Natural Gas Industry,2014,34(12):1-15. (in Chinese with English abstract [3] 董大忠,王玉满,李新景,等. 中国页岩气勘探开发新突破及发展前景思考[J]. 天然气工业,2016,36(1):19-32.DONG D Z,WANG Y M,LI X J,et al. Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry,2016,36(1):19-32. (in Chinese with English abstract [4] 刘超,包汉勇,万云强. 四川盆地东缘白马地区常压页岩气开发地质评价[J]. 地质科技通报,2024,43(4):53-61.LIU C,BAO H Y,WAN Y Q. Development geology avaluation of normal-pressured shale gas in the Baima area,eastern margin of the Sichuan Basin[J]. Bulletin of Geological Science and Technology,2024,43(4):53-61. (in Chinese with English abstract [5] YAN D,WANG H,FU Q L,et al. Geochemical characteristics in the Longmaxi Formation (Early Silurian) of South China:Implications for organic matter accumulation[J]. Marine and Petroleum Geology,2015,65:290-301. doi: 10.1016/j.marpetgeo.2015.04.016 [6] 邹才能,董大忠,王玉满,等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发,2015,42(6):689-701.ZOU C N,DONG D Z,WANG Y M,et al. Shale gas in China:Characteristics,challenges and prospects(Ⅰ)[J]. Petroleum Exploration and Development,2015,42(6):689-701. (in Chinese with English abstract [7] 张水昌,张宝民,边立曾,等. 中国海相烃源岩发育控制因素[J]. 地学前缘,2005,12(3):39-48.ZHANG S C,ZHANG B M,BIAN L Z,et al. Development constraints of marine source rocks in China[J]. Earth Science Frontiers,2005,12(3):39-48. (in Chinese with English abstract [8] YAN D T,CHEN D Z,WANG Q C,et al. Carbon and sulfur isotopic anomalies across the Ordovician–Silurian boundary on the Yangtze Platform,South China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2009,274(1/2):32-39. [9] 邓空,陆扬博,张柏林,等. 二叠纪中晚期地质事件对川东北富有机质页岩发育的控制[J]. 地质科技通报,2025,44(2):161-181.DENG K,LU Y B,ZHANG B L,et al. Controls of Middle and Late Permian major geological events on the development of the organic-rich shales in northeast Sichuan Basin[J]. Bulletin of Geological Science and Technology,2025,44(2):161-181. (in Chinese with English abstract [10] LIU Y,WU B,GONG Q S,et al. Geochemical characteristics of the Lower Silurian Longmaxi Formation on the Yangtze Platform,South China:Implications for depositional environment and accumulation of organic matters[J]. Journal of Asian Earth Sciences,2019,184:104003. doi: 10.1016/j.jseaes.2019.104003 [11] YAN D T,CHEN D Z,WANG Z Z,et al. Climatic and oceanic controlled deposition of Late Ordovician-Early Silurian black shales on the North Yangtze Platform,South China[J]. Marine and Petroleum Geology,2019,110:112-121. doi: 10.1016/j.marpetgeo.2019.06.040 [12] YANG X R,YAN D T,ZHANG B,et al. Anomalous weathering trends during the Early Silurian warming:Implications for the biotic crisis and recovery[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2023,632:111859. [13] ZAN B W,MOU C L,LASH G G,et al. Upwelling-driven biogenic silica accumulation in the Yangtze Sea,South China during Late Ordovician to Early Silurian time:A possible link with the global climatic transitions[J]. Sedimentary Geology,2024,461:106571. doi: 10.1016/j.sedgeo.2023.106571 [14] BERNER R A,LASAGA A C,GARRELS R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science,1983,283(7):641-683. doi: 10.2475/ajs.283.7.641 [15] LENTON T M,DAHL T W,DAINES S J,et al. Earliest land plants created modern levels of atmospheric oxygen[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(35):9704-9709. [16] TRIBOVILLARD N,ALGEO T J,LYONS T,et al. Trace metals as paleoredox and paleoproductivity proxies:An update[J]. Chemical Geology,2006,232(1/2):12-32. [17] 王玉满,董大忠,李新景,等. 四川盆地及其周缘下志留统龙马溪组层序与沉积特征[J]. 天然气工业,2015,35(3):12-21. doi: 10.3787/j.issn.1000-0976.2015.03.002WANG Y M,DONG D Z,LI X J,et al. Stratigraphic sequence and sedimentary characteristics of Lower Silurian Longmaxi Formation in the Sichuan Basin and its peripheral areas[J]. Natural Gas Industry,2015,35(3):12-21. (in Chinese with English abstract doi: 10.3787/j.issn.1000-0976.2015.03.002 [18] LIU M,CHEN D Z,JIANG L,et al. Oceanic anoxia and extinction in the Latest Ordovician[J]. Earth and Planetary Science Letters,2022,588:117553. doi: 10.1016/j.jpgl.2022.117553 [19] TORSVIK T H,COCKS L R M. Gondwana from top to base in space and time[J]. Gondwana Research,2013,24(3/4):999-1030. [20] ZOU C N,QIU Z,POULTON S W,et al. Ocean euxinia and climate change “double whammy” drove the Late Ordovician mass extinction[J]. Geology,2018,46(6):535-538. doi: 10.1130/G40121.1 [21] YAN C N,JIN Z J,ZHAO J H,et al. Influence of sedimentary environment on organic matter enrichment in shale:A case study of the Wufeng and Longmaxi Formations of the Sichuan Basin,China[J]. Marine and Petroleum Geology,2018,92:880-894. doi: 10.1016/j.marpetgeo.2018.01.024 [22] LI S Z,ZHOU Z,NIE H K,et al. Organic matter accumulation mechanisms in the Wufeng-Longmaxi shales in western Hubei Province,China and paleogeographic implications for the uplift of the Hunan-Hubei submarine high[J]. International Journal of Coal Geology,2023,270:104223. doi: 10.1016/j.coal.2023.104223 [23] CAI Q S,HU M Y,KANE O I,et al. Cyclic variations in paleoenvironment and organic matter accumulation of the Upper Ordovician-Lower Silurian black shale in the Middle Yangtze region,South China:Implications for tectonic setting,paleoclimate,and sea-level change[J]. Marine and Petroleum Geology,2022,136:105477. doi: 10.1016/j.marpetgeo.2021.105477 [24] JIN C S,LIAO Z W,LASH G G. High-frequency redox variation across the Ordovician–Silurian transition,South China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2021,566:110218. [25] ZHAO J H,JIN Z J,JIN Z K,et al. Applying sedimentary geochemical proxies for paleoenvironment interpretation of organic-rich shale deposition in the Sichuan Basin,China[J]. International Journal of Coal Geology,2016,163:52-71. doi: 10.1016/j.coal.2016.06.015 [26] CHEN C,MU C L,ZHOU K K,et al. The geochemical characteristics and factors controlling the organic matter accumulation of the Late Ordovician-Early Silurian black shale in the Upper Yangtze Basin,South China[J]. Marine and Petroleum Geology,2016,76:159-175. doi: 10.1016/j.marpetgeo.2016.04.022 [27] CHEN X,RONG J Y,LI Y,et al. Facies patterns and geography of the Yangtze region,South China,through the Ordovician and Silurian transition[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2004,204(3/4):353-372. [28] ZHANG G W,GUO A L,WANG Y J,et al. Tectonics of South China continent and its implications[J]. Science China Earth Sciences,2013,56(11):1804-1828. doi: 10.1007/s11430-013-4679-1 [29] CHEN X,ZHANG Y D,FAN J X,et al. Onset of the Kwangsian Orogeny as evidenced by biofacies and lithofacies[J]. Science China Earth Sciences,2012,55(10):1592-1600. doi: 10.1007/s11430-012-4490-4 [30] 牟传龙,葛祥英,许效松,等. 中上扬子地区晚奥陶世岩相古地理及其油气地质意义[J]. 古地理学报,2014,16(4):427-440.MOU C L,GE X Y,XU X S,et al. Lithofacies palaeogeography of the Late Ordovician and its petroleum geological significance in Middle-Upper Yangtze region[J]. Journal of Palaeogeography,2014,16(4):427-440. (in Chinese with English abstract [31] 王怿,戎嘉余,詹仁斌,等. 四川南部布拖地区志留系的新研究[J]. 地层学杂志,2014,38(3):257-267.WANG Y,RONG J Y,ZHAN R B,et al. New study of the Silurian system in the Butuo district,southern Sichuan,SW China[J]. Journal of Stratigraphy,2014,38(3):257-267. (in Chinese with English abstract [32] NESBITT H W,YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature,1982,299:715-717. doi: 10.1038/299715a0 [33] MCLENNAN S M. Weathering and global denudation[J]. The Journal of Geology,1993,101(2):295-303. doi: 10.1086/648222 [34] FEDO C M,WAYNE NESBITT H,YOUNG G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols,with implications for paleoweathering conditions and provenance[J]. Geology,1995,23(10):921-924. [35] HARNOIS L. The CIW index:A new chemical index of weathering[J]. Sedimentary Geology,1988,55(3/4):319-322. [36] ALGEO T J,LIU J S. A re-assessment of elemental proxies for paleoredox analysis[J]. Chemical Geology,2020,540:119549. doi: 10.1016/j.chemgeo.2020.119549 [37] TAYLOR S R,MCLENNAN S M. The continental crust:Its composition and evolution[M]. Oxford:Blackwell Scientific Publications,1985. [38] GABET E J,MUDD S M. A theoretical model coupling chemical weathering rates with denudation rates[J]. Geology,2009,37(2):151-154. doi: 10.1130/G25270A.1 [39] YAN D T,CHEN D Z,WANG Q C,et al. Large-scale climatic fluctuations in the Latest Ordovician on the Yangtze block,South China[J]. 2010,38(7):599-602. [40] DICKINSON W R,SUCZEK C A. Plate tectonics and sandstone compositions[J]. 1979,63(12):2164-2182. [41] COX R,LOWE D R,CULLERS R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta,1995,59(14):2919-2940. doi: 10.1016/0016-7037(95)00185-9 [42] NESBITT H W,YOUNG G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta,1984,48(7):1523-1534. doi: 10.1016/0016-7037(84)90408-3 [43] 钟巍,李吉均,方小敏,等. 临夏盆地王家山剖面沉积物地球化学元素特征与季风演化[J]. 海洋地质与第四纪地质,1997,17(4):55-61.ZHONG W,LI J J,FANG X M,et al. Geochemical features of the sediment in Wangjiashan section in Linxia Basin and monsoon evolution[J]. Marine Geology & Quaternary Geology,1997,17(4):55-61. (in Chinese with English abstract [44] 彭淑贞,郭正堂. 风尘堆积中SiO2/Al2O3值与粒度的关系及其对东亚冬季风的指示意义[J]. 中国科学(D辑:地球科学),2001,31(增刊1):209-214.PENG S Z,GUO Z T. The relationship between SiO2 /Al2O3 value and grain size in aeolian dust accumulation and its indicative significance for East Asian winter monsoon[J]. Science in China Series D (Earth Sciences),2001,31(S1):209-214. (in Chinese). [45] WANG P,DU Y S,YU W C,et al. The chemical index of alteration (CIA) as a proxy for climate change during glacial-interglacial transitions in Earth history[J]. Earth-Science Reviews,2020,201:103032. doi: 10.1016/j.earscirev.2019.103032 [46] TROTTER J A,WILLIAMS I S,BARNES C R,et al. New conodont δ18O records of Silurian climate change:Implications for environmental and biological events[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2016,443:34-48. [47] SPROSON A D. Pacing of the Latest Ordovician and Silurian carbon cycle by a ~4.5 Myr orbital cycle[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2020,540:109543. [48] YANG J H,CAWOOD P A,CONDON D J,et al. Anomalous weathering trends indicate accelerated erosion of tropical basaltic landscapes during the Permo-Triassic warming[J]. Earth and Planetary Science Letters,2022,577:117256. doi: 10.1016/j.jpgl.2021.117256 [49] GOUDIE A S,VILES H A. Weathering and the global carbon cycle:Geomorphological perspectives[J]. Earth-Science Reviews,2012,113(1/2):59-71. [50] DELLINGER M,GAILLARDET J,BOUCHEZ J,et al. Riverine Li isotope fractionation in the Amazon River Basin controlled by the weathering regimes[J]. Geochimica et Cosmochimica Acta,2015,164:71-93. doi: 10.1016/j.gca.2015.04.042 [51] POGGE VON STRANDMANN P A E,DESROCHERS A,MURPHY M J,et al. Global climate stabilisation by chemical weathering during the Hirnantian glaciation[J]. Geochemical Perspectives Letters,2017:230-237. [52] GOULDEY J C,SALTZMAN M R,YOUNG S A,et al. Strontium and carbon isotope stratigraphy of the Llandovery (Early Silurian):Implications for tectonics and weathering[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2010,296(3/4):264-275. [53] HU D P,ZHANG X L,ZHOU L,et al. 87Sr/86Sr evidence from the epeiric Martin Ridge Basin for enhanced carbonate weathering during the Hirnantian[J]. Scientific Reports,2017,7:11348. doi: 10.1038/s41598-017-11619-w [54] YANG S C,HU W X,FAN J X,et al. New geochemical identification fingerprints of volcanism during the Ordovician-Silurian transition and its implications for biological and environmental evolution[J]. Earth-Science Reviews,2022,228:104016. doi: 10.1016/j.earscirev.2022.104016 [55] VON STRANDMANN P A E P,KASEMANN S A,WIMPENNY J B. Lithium and lithium isotopes in earth's surface cycles[J]. Elements,2020,16(4):253-258. [56] YANG X R,YAN D T,WILSON D J,et al. Lithium isotope and mercury evidence for enhanced continental weathering and intense volcanism during the Ordovician-Silurian transition[J]. Geochimica et Cosmochimica Acta,2025,391:49-68. doi: 10.1016/j.gca.2024.12.010 [57] YANG X R,YAN D T,LIU M,et al. Zinc isotopic evidence for enhanced continental weathering and organic carbon burial in the Early Silurian[J]. Chemical Geology,2024,662:122209. doi: 10.1016/j.chemgeo.2024.122209 [58] 李双建,肖开华,沃玉进,等. 南方海相上奥陶统−下志留统优质烃源岩发育的控制因素[J]. 沉积学报,2008,26(5):872-880.LI S J,XIAO K H,WO Y J,et al. Developmental controlling factors of Middle Ordovician-Lower Silurian high quality source rocks in marine sequence,South China[J]. Acta Sedimentologica Sinica,2008,26(5):872-880. (in Chinese with English abstract [59] LU Y B,JIANG S,LU Y C,et al. Productivity or preservation? The factors controlling the organic matter accumulation in the Late Katian through Hirnantian Wufeng organic-rich shale,South China[J]. Marine and Petroleum Geology,2019,109:22-35. doi: 10.1016/j.marpetgeo.2019.06.007 [60] QIU Z,LI Y F,XIONG W,et al. Revisiting paleoenvironmental changes on the Upper Yangtze block during the Ordovician-Silurian transition:New insights from elemental geochemistry[J]. Sedimentary Geology,2023,450:106377. doi: 10.1016/j.sedgeo.2023.106377 [61] SWEERE T,VAN DEN BOORN S,DICKSON A J,et al. Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn,Co,Mo and Cd concentrations[J]. Chemical Geology,2016,441:235-245. doi: 10.1016/j.chemgeo.2016.08.028 [62] ALGEO T J,LYONS T W. Mo-total organic carbon covariation in modern anoxic marine environments:Implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography,2006,21(1):1016. [63] ALGEO T J,TRIBOVILLARD N. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation[J]. Chemical Geology,2009,268(3/4):211-225. [64] 李艳芳,吕海刚,张瑜,等. 四川盆地五峰组−龙马溪组页岩U-Mo协变模式与古海盆水体滞留程度的判识[J]. 地球化学,2015,44(2):109-116.LI Y F,LÜ H G,ZHANG Y,et al. U-Mo covariation in marine shales of Wufeng-Longmaxi Formations in Sichuan Basin,China and its implication for identification of watermass restriction[J]. Geochimica,2015,44(2):109-116. (in Chinese with English abstract [65] 王玉满,李新景,董大忠,等. 上扬子地区五峰组−龙马溪组优质页岩沉积主控因素[J]. 天然气工业,2017,37(4):9-20.WANG Y M,LI X J,DONG D Z,et al. Main factors controlling the sedimentation of high-quality shale in Wufeng–Longmaxi Fm,Upper Yangtze region[J]. Natural Gas Industry,2017,37(4):9-20. (in Chinese with English abstract [66] 张明亮,郭伟,沈俊,等. 古海洋氧化还原地球化学指标研究新进展[J]. 地质科技情报,2017,36(4):95-106.ZHANG M L,GUO W,SHEN J,et al. New progress on geochemical indicators of ancient oceanic redox condition[J]. Geological Science and Technology Information,2017,36(4):95-106. (in Chinese with English abstract [67] ALGEO T J,INGALL E. Sedimentary Corg:P ratios,paleocean ventilation,and Phanerozoic atmospheric PO2[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2007,256(3/4):130-155. [68] 郭战峰,舒逸,陈绵琨,等. 川东侏罗系凉高山组页岩沉积环境特征及有机质富集机理[J]. 地质科技通报,2024,43(4):62-74.GUO Z F,SHU Y,CHEN M K,et al. Characteristics of the shale sedimentary environment and organic matter enrichment mechanism in the Jurassic Lianggaoshan Formation in the East Sichuan Basin[J]. Bulletin of Geological Science and Technology,2024,43(4):62-74. (in Chinese with English abstract [69] YU Y M,LI P P,GUO R X,et al. Upwelling-induced organic matter enrichment of the Upper Permian Dalong Formation in the Sichuan Basin,SW China and its paleoenvironmental implications[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2021,576:110510. [70] CHEN Q,KANG Y L,YOU L J,et al. Change in composition and pore structure of Longmaxi black shale during oxidative dissolution[J]. International Journal of Coal Geology,2017,172:95-111. doi: 10.1016/j.coal.2017.01.011 [71] JIN C S,LIAO Z W,TANG Y J. Sea-level changes control organic matter accumulation in the Longmaxi shales of southeastern Chongqing,China[J]. Marine and Petroleum Geology,2020,119:104478. doi: 10.1016/j.marpetgeo.2020.104478 [72] YANG X R,YAN D T,ZHANG B,et al. The impact of volcanic activity on the deposition of organic-rich shales:Evidence from carbon isotope and geochemical compositions[J]. Marine and Petroleum Geology,2021,128:105010. doi: 10.1016/j.marpetgeo.2021.105010 [73] WEI X,ZHAN R B. A Late Rhuddanian (Early Llandovery,Silurian) trilobite association from South China and its implications[J]. Palaeoworld,2018,27(1):42-52. doi: 10.1016/j.palwor.2017.05.008 -