An indoor experimental on the initiation mechanism and precursor characteristics of dangerous rock failure on slopes based on acoustic and visual monitoring
-
摘要:
为有效预测和防范危岩崩塌,保障公路交通运输的安全,通过声发射和视频联合监测的方法,开展4个不同工况下危岩崩塌启动的室内模型试验,结合声发射信号在时域、频域、时频域的演化特征,以及视频图像的时空变化特征,对多种不同影响因素下危岩崩塌孕育过程的启动机制与前兆特征进行了研究与分析。研究结果表明,在启动机制方面,危岩崩塌的主控因素包括危岩重心偏移、危岩与坡面间的黏结力下降和边坡危岩整体下滑力增大且超过抗滑力极限。其中危岩与坡面(或母岩)间的黏结力下降为滑移式与倾倒式崩塌的共有启动机制,危岩重心发生偏移主要为倾倒式崩塌的启动机制,危岩整体下滑力增大且超过抗滑力极限主要为滑移式崩塌的启动机制。可将这3类主控因素作为实际边坡危岩崩塌启动机制的判断标准之一。在前兆特征方面,危岩崩塌前,宏观上出现局部掉块与小型岩崩等前兆现象,声发射信号多出现于中低频带中,且主频带较宽,同时中高幅值、高能量信号占比较多。因此当综合前兆特征中多个单一前兆特征同时出现时,可作为实际边坡危岩发生崩塌的判断标准之一。本研究可为公路边坡危岩崩塌的监测预警提供了科学依据和技术支持,有助于提高危岩崩塌灾害防治的有效性和可靠性。
Abstract:Objective In order to effectively predict and prevent dangerous rock failure and ensure the safety of highway transportation.
Methods This paper carries out indoor modeling tests on the initiation of dangerous rock failure under four different working conditions by means of joint monitoring of acoustic emission and video, and combines the evolution characteristics of acoustic emission signals in the time, frequency, and time-frequency domains, as well as the temporal and spatial characteristics of video images, to study and analyze the initiation mechanism and precursor characteristics of the process of dangerous rock failure under a variety of different influencing factors.
Results The study and analysis of the initiation mechanism and precursor characteristics of the process of dangerous rock failure under a variety of different influencing factors were carried out, and the results showed that, in terms of the initiation mechanism, the main controlling factors of dangerous rock failure include the shift of the center of gravity of dangerous rock, the decrease of the adhesion between dangerous rock and slope surface, and the increase of the overall downward sliding force of the dangerous rock of the slope and the increase of the limit of the anti-sliding force. Among them, the decrease of bonding force between hazardous rock and slope surface (or mother rock) is the common initiating mechanism of slip type and tipping type collapse, the shift of center of gravity of hazardous rock is mainly the initiating mechanism of tipping type collapse, and the increase of overall downward sliding force of hazardous rock exceeding the limit of sliding resistance is mainly the initiating mechanism of slip type collapse. These three types of main control factors can be used as one of the judgment criteria for the initiation mechanism of actual slope failure. In terms of precursor characteristics, before the collapse of dangerous rocks, there are precursor phenomena such as localized falling blocks and small rock avalanches on the macro level, and the acoustic emission signals mostly appear in the middle and low frequency bands and the main frequency band is wide, and at the same time, the middle and high amplitude and energy signals account for a large number of the signals. Therefore, when multiple single precursor features appear simultaneously in the comprehensive precursor features, it can be used as one of the judgment criteria for the occurrence of actual slope failure.
Conclusion The research in this paper can provide scientific basis and technical support for the monitoring and early warning of highway slope dangerous rock failure, which can help to improve the effectiveness and reliability of the prevention and control of dangerous rock failure disaster.
-
图 1 声发射−微震研究频率范围[40]
Figure 1. Acoustic emission-microseismic research frequency range
表 1 全国近10年地质灾害及崩塌灾害统计
Table 1. National geological disasters and collapse disaster statistics in the past 10 years
年份 地质灾害总数/起 崩塌/起 崩塌占比/% 2013年 15374 3288 21.39 2014年 10937 1860 17.01 2015年 8355 1870 22.38 2016年 10997 1905 17.32 2017年 7521 1356 18.03 2018年 2966 858 28.93 2019年 6181 1238 20.03 2020年 7840 1797 22.92 2021年 4761 1746 36.67 2022年 5659 1366 24.14 总计 80591 17284 21.45 表 2 典型崩塌灾害案例
Table 2. Typical cases of collapse disasters
序号 灾害名称 发生时间 事件详细描述 灾情统计 1 贵州凯里龙场镇山体崩塌 2013-02-18 崩塌体积约 5400 m3,有6个工棚被埋压5人死亡 2 广西桂林叠彩山景区山体崩塌 2015-03-19 崩塌体积约为60 m3,崩落后岩石破碎分解四处散落 7人死亡,25人受伤 3 陕西安康紫阳县山体崩塌 2017-06-13 一处公路发生山体岩石崩塌,一辆乘坐有3人的小轿车被落石掩埋 3人死亡 4 湖北襄阳南漳县山体崩塌 2017-01-20 某酒店后山发生山体崩塌,体积约 3000 余m312人死亡 5 “8·28”贵州纳雍县山体崩塌 2017-08-28 整面山体崩塌下冲,淹没山脚下的普洒社区,民房
倒塌34户,覆盖面积5~6 km217人死亡,8人受伤,18人失联 6 “8·14”成昆铁路山体崩塌 2019-08-14 受持续强降雨影响,成昆铁路凉红站至埃岱站间,数万方高位
岩体突然崩塌,致现场24名抢险清淤工作人员遇险12人死亡,12人失联 7 陕西榆林麻兴庄村山体崩塌 2021-11-11 泽林石油工程公司所在井场旁侧山体发生崩塌 2人死亡 8 广西北流多地山体崩塌 2022-06-09 多地遭遇暴雨袭击,引发山体崩塌灾害 7人死亡,1人失联 9 贵州织金县白岩村山体崩塌 2022-05-08 突发山体崩塌,体积约 25000 m33人死亡 10 山西柳林县山体崩塌 2023-01-28 山西吕梁市柳林县穆村镇康家沟村发生山体崩塌 4人死亡 表 3 声发射监测技术指标
Table 3. Acoustic emission monitoring technical indicators
名称 电压幅值范围 频率范围/Hz 采样间隔/ms 参数设置 ±2 ( 25000 ,5000 )0.02 表 4 不同风化工况下崩塌的时空变化特征
Table 4. Characteristics of spatiotemporal variation of the collapse under different weathering conditions
时间区间/s 试块变化 幅值 分区 (0,3.5) 抽动A3 1.6 s 最大0.055 a区 (4.6,6.15) 抽动A2,A1 4.8 s最大0.186 b区 (7.4,8) A滑移 7.0 s最大0.031 c区 表 5 时空变化特征
Table 5. Characteristics of spatiotemporal variation
时间区间/s 试块变化 幅值 分区 (3.9,6.5) E1,E2碰撞;E3,E4滑落 4.83 s最大0.442 d区 (8.3,9) E崩塌 8.53 s最大0.031 e区 (9.43,10) E、E1碰撞滑动 9.63 s最大0.094 f区 表 6 时空变化特征
Table 6. Characteristics of spatiotemporal variation
时间区间/s 试块变化 幅值 分区 (2.1,3.1) 危岩摩擦产生信号 2.69 s最大0.019 g区 (3.1,3.5) 崩塌启动产生临界滑动信号 3.22 s最大0.04 h区 (3.59,4.1) 多次离散的高幅值离散声发射信号 3.82 s最大0.05 h区 表 7 时空变化特征
Table 7. Characteristics of spatiotemporal variation
时间区间/s 试块变化 幅值 分区 (0,1.2) C3,C2崩落;C轻微滑移 1.12 s最大0.405 i区 (1.4,2.05) C3崩落 1.49 s最大0.883 — 2.3 C1,C崩塌滑移 2.65 s最大0.335 j区 (2.6,3.2) C崩塌滑移 — — 3.6 — 3.59 s最大0.648 k区 5.2 — 5.17 s最大0.401 k区 表 8 危岩崩塌综合启动机制
Table 8. Comprehensive initiation mechanism of dangerous rock collapse
危岩崩塌影响因素 启动机制 破坏模式 风化 边坡危岩底部软弱支撑基座风化崩落,危岩重心发生偏移 倾倒式崩塌 坡度 边坡坡度增大,危岩重心升高,下滑力不断增大且超过抗滑力 滑移式崩塌 外部荷载 受推力作用,边坡危岩整体下滑力增大且超过抗滑摩擦力极限 滑移式崩塌 振动 受锤击振动惯性力作用产生的共振效应,边坡危岩强度降低且与坡面的黏结力下降 滑移式崩塌 表 9 危岩崩塌综合前兆特征
Table 9. Comprehensive precursor characteristics of dangerous rock collapse
危岩崩塌
影响因素前兆特征 时域 频域 时频域 风化 出现突发型中高幅值
声发射信号出现多次低频(频率范围(300,500)Hz)
高幅值(幅值范围(0,0.921×10−4)Hz)信号出现大量低频(频率范围(300,500)Hz)高能信号 坡比 先出现多次高幅值声发射信号,
随后出现连续低幅值声发射信号主频带较宽,出现低(频率范围(200,500)Hz)频中
高频(频率范围(500,1200 )Hz)混合的高幅值
(幅值范围(0,0.1.975×10−4)10 Hz)信号出现大量低频(频率范围(200,500)Hz)并混合少量中高(频率范围(500, 1200 )Hz)频的高能信号外部荷载 出现连续密集的低幅值抗滑摩擦
信号与高幅值临界滑动信号出现低频(频率范围(280,500)Hz)高幅值
(幅值范围(0,0.910×10−4)Hz)临界滑动信号与中频
(频率范围(500,750)Hz)高幅值抗滑摩擦信号出现大量低频(频率范围(280,500)Hz)高能
抗滑摩擦信号与较少中频(频率范围
(500,750)Hz)高能临界滑动信号振动 小块危岩崩落产生
的高幅值信号小块危岩崩落产生在低频(频率范围(180,450)Hz)
高幅值(幅值范围(0,4.287×10−4)Hz)信号小块危岩崩落产生的低频
(频率范围(180,450)Hz)高能信号 -
[1] 国家统计局. 中国统计年签2023:地质灾害及防治情况[M]. 北京:中国统计出版社,2023.National Bureau of Statistics. China Statistical Yearbook 2023 :Geological Disasters and Prevention [M]. Beijing :China Statistical Press,2023. (in Chinese) [2] 杜岩,谢谟文,蒋宇静,等. 岩体崩塌灾害成因机制与早期预警研究综述[J]. 金属矿山,2021(1):106-119.DU Y,XIE M W,JIANG Y J,et al. Review on the formation mechanism and early warning of rock collapse[J]. Metal Mine,2021(1):106-119. (in Chinese with English abstract [3] 陈洪凯,董平,唐红梅. 危岩崩塌灾害研究现状与趋势[J]. 重庆师范大学学报(自然科学版),2015,32(6):53-60.CHEN H K,DONG P,TANG H M. The status quo and trends of perilous rock and collapse disaster[J]. Journal of Chongqing Normal University (Natural Science),2015,32(6):53-60. (in Chinese with English abstract [4] 陈洪凯,秦鑫. 危岩稳定性分析研究现状及趋势[J]. 重庆交通大学学报(自然科学版),2018,37(10):49-60. doi: 10.3969/j.issn.1674-0696.2018.10.09CHEN H K,QIN X. Status quo and trend of unstable rock stability analysis[J]. Journal of Chongqing Jiaotong University (Natural Science),2018,37(10):49-60. (in Chinese with English abstract doi: 10.3969/j.issn.1674-0696.2018.10.09 [5] 任恩. 雷波县莫红集镇后山危岩的成因机制及稳定性分析[J]. 四川地质学报,2023,43(4):667-673. doi: 10.3969/j.issn.1006-0995.2023.04.015REN E. Genetic mechanism and stability analysis of Houshan dangerous rock in mohongji town,Leibo County[J]. Acta Geologica Sichuan,2023,43(4):667-673. (in Chinese with English abstract doi: 10.3969/j.issn.1006-0995.2023.04.015 [6] 熊良文. 集安市南部鸭绿江沿岸边坡崩塌落石运动特性及风险评估研究[D]. 长春:吉林大学,2023.XIONG L W. tudy on the Characteristics of Rockfall Movement and Risk Assessment along the Yalu River in the South of Ji'an City[D]. Changchun:Jilin University,2023. (in Chinese with English abstract [7] 郭炳跃,咸玉建,梁聪,等. 无锡市鼋头渚景区岩质边坡崩塌形成机制及防治对策研究[J]. 地质灾害与环境保护,2020,31(1):63-69. doi: 10.3969/j.issn.1006-4362.2020.01.010GUO B Y,XIAN Y J,LIANG C,et al. Research on mechanism and prevention countermeasures of rock slope collapse in Wuxi Yuantouzhu scenic area[J]. Journal of Geological Hazards and Environment Preservation,2020,31(1):63-69. (in Chinese with English abstract doi: 10.3969/j.issn.1006-4362.2020.01.010 [8] 宋子贺,李学锋,齐发富,等. 露天矿山危岩崩塌事故成因分析[J]. 广西大学学报(自然科学版),2021,46(1):159-165.SONG Z H,LI X F,QI F F,et al. Analysis of thetriggering factors for dangerous rockfall accident in open pit mine[J]. Journal of Guangxi University (Natural Science Edition),2021,46(1):159-165. (in Chinese with English abstract [9] 周阳. 板裂千枚岩力学特性及崩塌灾害成因机制研究:以汶(川)−马(尔康)高速公路边坡为例[D]. 西安:长安大学,2021.ZHOU Y. Study on mechanical properties of foliated phyllite and the mechanism of collapse disaster:Taking the slope of Wen (Chuan)-Ma (Erkang) Expressway as an example[D]. Xi'an:Changan University,2021. (in Chinese with English abstract [10] 陈洪凯,唐红梅. 长江三峡水库区危岩分类及宏观判据研究[J]. 中国地质灾害与防治学报,2005,16(4):53-57. doi: 10.3969/j.issn.1003-8035.2005.04.013CHEN H K,TANG H M. Classification and identify of perilous rock in the area of the Three Gorges Reservoir[J]. The Chinese Journal of Geological Hazard and Control,2005,16(4):53-57. (in Chinese with English abstract doi: 10.3969/j.issn.1003-8035.2005.04.013 [11] 柳万里,晏鄂川,戴航,等. 南漳保康两县碳酸盐岩崩塌发育特征及影响程度分区[J]. 地质科技通报,2020,39(2):104-112.LIU W L,YAN E C,DAI H,et al. Development characteristics and influence degree zoning of carbonate rock collapse in Nanzhang and Baokang Counties[J]. Bulletin of Geological Science and Technology,2020,39(2):104-112. (in Chinese with English abstract [12] 张志希,陈克勋,侯均洪,等. 危岩变形自动化监测预警技术与应用:以重庆市江北区唐郭路为例[J]. 自然资源信息化,2024(1):35-41. doi: 10.3969/j.issn.1674-3695.2024.01.006ZHANG Z X,CHEN K X,HOU J H,et al. Application of intelligent monitoring and early warning technology mode of geological disaster:A case study of Tangguo Road in Jiangbei District of Chongqing[J]. Natural Resources Informatization,2024(1):35-41. (in Chinese with English abstract doi: 10.3969/j.issn.1674-3695.2024.01.006 [13] 凌建明,张玉,满立,等. 公路边坡智能化监测体系研究进展[J]. 中南大学学报(自然科学版),2021,52(7):2118-2136LING J M,ZHANG Y,MAN L,et al. Research progress of intelligent monitoring system for highway slope[J]. Journal of Central South University (Science and Technology),2021,52(7):2118-2136. (in Chinese with English abstract [14] 王梓龙,裴向军,董秀军,等. 三维激光扫描技术在危岩监测中的应用[J]. 水文地质工程地质,2016,43(1):124-129.WANG Z L,PEI X J,DONG X J,et al. Application of a terrestrial laser scanner to the study of rockfall monitoring[J]. Hydrogeology & Engineering Geology,2016,43(1):124-129. (in Chinese with English abstract [15] 张森桂,胡艺. 三维激光扫描技术在景区危岩扫描监测中的应用[J]. 科技创新与生产力,2023(5):128-130. doi: 10.3969/j.issn.1674-9146.2023.05.128ZHANG S G,HU Y. Application of 3D laser scanning technology in scanning and monitoring of dangerous rock in scenic areas[J]. Sci-Tech Innovation and Productivity,2023(5):128-130. (in Chinese with English abstract doi: 10.3969/j.issn.1674-9146.2023.05.128 [16] 邹杨,刘毅,李建强,等. 基于无人机模型的危岩运动模拟及风险区划[J]. 铁道工程学报,2023,40(2):6-11. doi: 10.3969/j.issn.1006-2106.2023.02.002ZOU Y,LIU Y,LI J Q,et al. Simulation of dangerous rock movement and risk zoning based on UAV model[J]. Journal of Railway Engineering Society,2023,40(2):6-11. (in Chinese with English abstract doi: 10.3969/j.issn.1006-2106.2023.02.002 [17] 廖昕. 基于无人机影像匹配点云数据的危岩监测应用研究[D]. 拉萨:西藏大学,2023.LIAO X. Application research on dangerous rock monitoring based on UAV image matching point cloud data [D]. Lasa:Tibet University,2023. (in Chinese with English abstract [18] 廖之恋,陈世万,杨贵,等. 拉裂-坠落式岩质崩塌失稳过程声信号特征模拟试验研究[J]. 自然灾害学报,2023,32(6):58-73.LIAO Z L,CHEN S W,YANG G,et al. Acoustic signal characteristics during the crack-toppling rock collapse developing process based on a simulation experiment[J]. Journal of Natural Disasters,2023,32(6):58-73. (in Chinese with English abstract [19] MINARDO A,ZENI L,COSCETTA A,et al. Distributed optical fiber sensor applications in geotechnical monitoring[J]. Sensors,2021,21(22):7514. doi: 10.3390/s21227514 [20] 庞伟军,邓清禄,熊建,等. 基于BOTDA的光纤传感技术在边坡变形监测中的应用研究[J]. 安全与环境工程,2012,19(6):28-33. doi: 10.3969/j.issn.1671-1556.2012.06.006PANG W J,DENG Q L,XIONG J,et al. Application study of optical fiber sensing technology to slope deformation monitoring based on BOTDA[J]. Safety and Environmental Engineering,2012,19(6):28-33. (in Chinese with English abstract doi: 10.3969/j.issn.1671-1556.2012.06.006 [21] 邓日朗,张庆华,刘伟,等. 基于改进两步法采样策略和卷积神经网络的崩塌易发性评价[J]. 地质科技通报,2024,43(2):186-200.DENG R L,ZHANG Q H,LIU W,et al. Collapse susceptibility evaluation based on an improved two-step sampling strategy and a convolutional neural network[J]. Bulletin of Geological Science and Technology,2024,43(2):186-200. (in Chinese with English abstract [22] 黄发明,胡松雁,闫学涯,等. 基于机器学习的滑坡易发性预测建模及其主控因子识别[J]. 地质科技通报,2022,41(2):79-90.HUANG F M,HU S Y,YAN X Y,et al. Landslide susceptibility prediction and identification of its main environmental factors based on machine learning models[J]. Bulletin of Geological Science and Technology,2022,41(2):79-90. (in Chinese with English abstract [23] PAGANO M,PALMA B,RUOCCO A,et al. Discontinuity characterization of rock masses through terrestrial laser scanner and unmanned aerial vehicle techniques aimed at slope stability assessment[J]. Applied Sciences,2020,10(8):2960. doi: 10.3390/app10082960 [24] ROBIATI C,EYRE M,VANNESCHI C,et al. Application of remote sensing data for evaluation of rockfall potential within a quarry slope[J]. ISPRS International Journal of Geo-Information,2019,8(9):367. doi: 10.3390/ijgi8090367 [25] ABELLÁN A,CALVET J,VILAPLANA J M,et al. Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring[J]. Geomorphology,2010,119(3/4):162-171. [26] ABELLÁN A,JABOYEDOFF M,OPPIKOFER T,et al. Detection of millimetric deformation using a terrestrial laser scanner:Experiment and application to a rockfall event[J]. Natural Hazards and Earth System Sciences,2009,9(2):365-372. doi: 10.5194/nhess-9-365-2009 [27] ABELLAN A,OPPIKOFER T,JABOYEDOFF M,et al. Terrestrial laser scanning of rock slope instabilities[J]. Earth Surface Processes and Landforms,2014,39(1):80-97. doi: 10.1002/esp.3493 [28] ABELLÁN A,VILAPLANA J M,CALVET J,et al. Rockfall monitoring by Terrestrial Laser Scanning:Case study of the basaltic rock face at Castellfollit de la Roca (Catalonia,Spain)[J]. Natural Hazards and Earth System Sciences,2011,11(3):829-841. doi: 10.5194/nhess-11-829-2011 [29] REN W,WANG C,ZHAO Y,et al. Research on Precursor Information of Brittle Rock Failure through Acoustic Emission[J]. Mathematics,2023,11(19):4210. doi: 10.3390/math11194210 [30] 于家烁,翟淑花,徐尚智,等. 北京山区典型流域泥石流次声预警模型[J]. 地质科技通报,2024,43(6):144-151.YU J S,ZHAI S H,XU S Z,et al. Infrasound early warning model for debris flow in a typical drainage basin in Beijing mountainous area[J]. Bulletin of Geological Science and Technology,2024,43(6):144-151. (in Chinese with English abstract [31] 赵志强,吴顺川,张小强,等. 岩体原位直剪试验声发射特征及破坏机理研究[J]. 工程地质学报,2023,31(6):1901-1909.ZHAO Z Q,WU S C,ZHANG X Q,et al. Acoustic emission characteristics and failure mechanism of rock mass with in situ direct shear test[J]. Journal of Engineering Geology,2023,31(6):1901-1909. (in Chinese with English abstract [32] 陈结,孟历德仁,蒲源源,等. 降雨作用下露天矿山岩质边坡稳定性与声−力学特征研究[J]. 金属矿山,2024(5):161-168.CHEN J,MENG L D R,PU Y Y,et al. Study on the stability and acoustic-mechanical characteristics of rock slopes in open-pit mines under the influence of rainfall[J]. Metal Mine,2024(5):161-168. (in Chinese with English abstract [33] CODEGLIA D,DIXON N,FOWMES G J,et al. Analysis of acoustic emission patterns for monitoring of rock slope deformation mechanisms[J]. Engineering Geology,2017,219:21-31. doi: 10.1016/j.enggeo.2016.11.021 [34] CODEGLIA D,DIXON N,FOWMES G J,et al. Strategies for rock slope failure early warning using acoustic emission monitoring[J]. IOP Conference Series:Earth and Environmental Science,2015,26:012028. doi: 10.1088/1755-1315/26/1/012028 [35] 张凯,张东晓,赵勇强,等. 损伤岩石声发射演化特征及响应机制试验研究[J]. 煤田地质与勘探,2024,52(3):96-106.ZHANG K,ZHANG D X,ZHAO Y Q,et al. Experimental study on acoustic emission evolution characteristics and response mechanism of damaged rocks[J]. Coal Geology & Exploration,2024,52(3):96-106. (in Chinese with English abstract [36] OHNAKA M,MOGI K. Frequency characteristics of acoustic emission in rocks under uniaxial compression and its relation to the fracturing process to failure[J]. Journal of Geophysical Research:Solid Earth,1982,87(B5):3873-3884. doi: 10.1029/JB087iB05p03873 [37] 何满潮,赵菲,张昱,等. 瞬时应变型岩爆模拟试验中花岗岩主频特征演化规律分析[J]. 岩土力学,2015,36(1):1-8.HE M C,ZHAO F,ZHANG Y,et al. Feature evolution of dominant frequency components in acoustic emissions of instantaneous strain-type granitic rockburst simulation tests[J]. Rock and Soil Mechanics,2015,36(1):1-8. (in Chinese with English abstract [38] HE M C,MIAO J L,FENG J L. Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47(2):286-298. doi: 10.1016/j.ijrmms.2009.09.003 [39] 许峻,杨润海,张建国,等. 脆性材料强破裂前兆的初步研究[J]. 地球物理学报,2011,54(9):2283-2292. doi: 10.3969/j.issn.0001-5733.2011.09.011XU J,YANG R H,ZHANG J G,et al. A preliminary study on precursors of strong fracture in brittle material specimens[J]. Chinese Journal of Geophysics,2011,54(9):2283-2292. (in Chinese with English abstract doi: 10.3969/j.issn.0001-5733.2011.09.011 [40] 姜鹏,戴峰,徐奴文,等. 岩体破裂尺度与频率特征关系及其工程实证研究[J]. 岩土力学,2016,37(增刊2):483-492.JIANG P,DAI F,XU N W,et al. Analysis of correlation between fracture scale and frequency characteristic of rock mass and its engineering verification[J]. Rock and Soil Mechanics,2016,37(S2):483-492. (in Chinese) -