留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习方法改进IVM-RF耦合模型的崩滑灾害危险性评价研究—以延安市志丹县为例

屈鹏鑫 谢婉丽 刘琦琦 王昱琛

屈鹏鑫,谢婉丽,刘琦琦,等. 基于机器学习方法改进IVM-RF耦合模型的崩滑灾害危险性评价研究—以延安市志丹县为例[J]. 地质科技通报,2025,44(3):1-16 doi: 10.19509/j.cnki.dzkq.tb20240583
引用本文: 屈鹏鑫,谢婉丽,刘琦琦,等. 基于机器学习方法改进IVM-RF耦合模型的崩滑灾害危险性评价研究—以延安市志丹县为例[J]. 地质科技通报,2025,44(3):1-16 doi: 10.19509/j.cnki.dzkq.tb20240583
QU Pengxin,XIE Wanli,LIU Qiqi,et al. Research on Collapse and Landslide Risk Assessment Based on Machine Learning Improved IVM-RF Coupling Method:A Case Study of Zhidan County,Yan'an City[J]. Bulletin of Geological Science and Technology,2025,44(3):1-16 doi: 10.19509/j.cnki.dzkq.tb20240583
Citation: QU Pengxin,XIE Wanli,LIU Qiqi,et al. Research on Collapse and Landslide Risk Assessment Based on Machine Learning Improved IVM-RF Coupling Method:A Case Study of Zhidan County,Yan'an City[J]. Bulletin of Geological Science and Technology,2025,44(3):1-16 doi: 10.19509/j.cnki.dzkq.tb20240583

基于机器学习方法改进IVM-RF耦合模型的崩滑灾害危险性评价研究—以延安市志丹县为例

doi: 10.19509/j.cnki.dzkq.tb20240583
基金项目: 国家自然科学基金(42372320;41972292),陕西省创新能力支撑计划(2021TD-54),陕西省重点研发计划(2022ZDLSF06-03),西安市科技计划项目(24LLRHZDZX0019)
详细信息
    作者简介:

    屈鹏鑫:E-mail:1279806472@qq.com

    通讯作者:

    E-mail:xiewanli@nwu.edu.cn

  • 中图分类号: P642.2

Research on Collapse and Landslide Risk Assessment Based on Machine Learning Improved IVM-RF Coupling Method:A Case Study of Zhidan County,Yan'an City

More Information
  • 摘要:

    为了给延安市志丹县防灾减灾和风险管控提供数据支持,给相似地区危险性评价提供参考依据,补充在崩塌和滑坡灾害危险性评价中未考虑累积降雨方面的影响,在10 a、20 a、50 a和100 a一遇4种不同降雨工况下进行了危险性评价。以延安市志丹县为研究区,以栅格单元作为评价单元,结合灾害特征及区域孕灾背景,通过皮尔逊相关系数法,选取高程、坡度、坡向、曲率、岩土体类型、距河流的距离、距道路的距离、归一化植被指数8个评价因子,采用信息量模型进行了易发性评价并分析了致灾因子与灾害分布关联性。利用计算机语言,自动处理前期因子数据的分析、转化、管理和出图等流程,改进了信息量(IVM)−随机森林(RF)耦合模型,实现了模型的自动循环迭代对比选择,通过ROC(受试者工作特征曲线,Receiver operating characteristic curve)曲线对比了2种易发性模型精度。在耦合模型评价结果的基础上进行危险性评价,用皮尔逊Ⅲ型曲线估算研究区10 a、20 a、50 a和100 a一遇4种不同工况下降雨量,并进行危险性分区。对于易发性分区结果,信息量−随机森林耦合模型评价结果的AUC值为0.87,优于IVM模型的评价结果;对于危险性分区结果,从10 a一遇到100 a一遇降雨工况的高和极高危险区面积都逐级增加。研究表明,改进的耦合模型评价方法不仅简化了操作还提高了精度,耦合模型确实拥有更好的评价精度和预测能力。

     

  • 图 1  志丹县地理位置示意图(a,b)及乡镇灾害点数量图(c)

    Figure 1.  Geographical location of Zhidan County and distribution of disaster sites in townships

    图 2  ArcPy程序包插件处理因子图

    Figure 2.  ArcPy package add-in processing factors diagram

    图 3  评价因子分级图

    Figure 3.  Evaluation factors classification diagram

    图 4  各因子相关性热力图

    Elevation. 高程;Slope. 坡度;Aspect. 坡向;Curvature. 曲率;DoR. 地形起伏度;RaST. 岩土体类型;DfR. 距河流距离;DfR'. 距道路距离

    Figure 4.  Heatmap of factor correlations

    图 5  随机森林计算权重流程图

    Figure 5.  Random forest weight calculation flowchart

    图 6  IVM-RF耦合模型流程图

    Figure 6.  Flowchart of IVM-RF coupled model

    图 7  各因子分级信息量值与灾害点占比图

    Figure 7.  IV values and disaster point ratio of factor classifications

    图 8  特征重要性图

    Figure 8.  Feature importance plot

    图 9  2种模型的崩滑易发性分区图

    Figure 9.  Landslide susceptibility zoning of two models

    图 10  2种模型的ROC曲线图

    Figure 10.  ROC curves of two models

    图 11  2001−2022年研究区月均降雨量

    Figure 11.  Monthly average rainfall (2001−2022) in the study area

    图 12  2001−2022年研究区各年月最大降雨量图

    Figure 12.  Annual maximum monthly rainfall (2001−2022) in the study area

    图 13  4种降雨工况下危险性分区图

    Figure 13.  Hazard zoning map under four rainfall conditions

    图 14  4种降雨工况危险性分区面积占比图

    Figure 14.  Area proportion of hazard zoning under four rainfall conditions

    表  1  数据来源一览表

    Table  1.   List of data sources

    一级因子 二级因子 数据来源 数据精度
    地形地貌 高程 基于SAGA7.0软件地形分析模块
    和Alos-DEM计算和提取
    12.5 m
    坡度
    坡向
    曲率
    地形起伏度
    基础地质 岩土体类型 中国国家地质资料数据中心 500 m
    断层褶皱
    气象水文 河流 中国1∶400万主要基础数据集 400 m
    降雨量 中国气象数据网 30 m
    人类活动 道路 中国1∶400万主要基础数据集 400 m
    植被覆盖 NDVI 地理空间数据云Landsat-8遥感影像 30 m
    NDVI. 归一化植被指数,下同
    下载: 导出CSV

    表  2  评价因子分级及信息量值表

    Table  2.   Classification and IV values of evaluation factors

    因子 分级 灾害点个数/个 分级栅格数量/个 分级栅格面积/m2 信息量值
    高程/m [10581289) 16 608485 380302991 1.284253630
    [12891377) 7 1317352 823345276 0.314832308
    [13771457) 8 1630754 1019220989 0.394719147
    [14571540) 12 1552184 970115147 0.060125067
    [15401726] 1 935256 584534972 1.918183422
    坡度/° [0,9) 7 953159 595724375 0.008765236
    [9,15) 4 1242953 776845625 0.816314099
    [15,21) 10 1303633 814770625 0.052311650
    [21,27) 8 1086974 679358750 0.010925392
    [27,33) 7 767382 479613750 0.225562246
    [33,40) 7 474786 296741250 0.705682791
    [40,68] 1 215144 134465000 0.448670753
    坡向 6 665049 415655625 0.214535566
    东北 1 748633 467895625 1.695612058
    3 944041 590025625 0.828920490
    东南 8 667542 417213750 0.498476051
    9 664204 415127500 0.621272065
    西南 6 673845 421153125 0.201396174
    西 7 954627 596641875 0.007226279
    西北 4 723506 452191250 0.275177659
    平面 0 2584 1615000 0
    曲率/m−1 [−29.44,−2.72) 7 755668 472292335 0.240945191
    [−2.72,0) 19 2350223 1468889970 0.104809896
    [0,2.72) 14 2187230 1367018525 0.128696869
    [2.72,28.32] 4 750910 469318545 0.312354189
    岩土体类型 黄土 14 4131521 2582200634 0.764706755
    红黏土 0 205738 128586332 0
    砂砾类土 0 1074 670650 0
    软硬相间碎屑岩组 29 1644572 1027857804 0.884696905
    次软−半坚硬
    碎屑岩组
    1 61126 38203954 0.809694166
    距河流距离/m [0,100) 25 1192609 745380334 1.057614410
    [100,200) 5 1010958 631848502 0.386578551
    [200,300) 4 875906 547441357 0.466327796
    [300,400) 0 751641 469775319 0
    >400 10 2212917 1383073863 0.476845456
    距道路距离/m [0,100) 16 663742 414839058 1.197331278
    [100,200) 8 641810 401131058 0.537786529
    [200,300) 5 626302 391438738 0.092242079
    [300,400] 3 609756 381097518 0.391809817
    >400 12 3502421 2189013003 0.753666199
    NDVI [0.21,0.65) 5 126663 79164373 1.690544739
    [0.65,0.75) 10 790323 493951624 0.552780697
    [0.75,0.81) 8 1503227 939516840 0.313291013
    [0.81,0.87) 17 2009315 1255822463 0.150300547
    (0.87,1] 4 1614503 1009064074 1.077850971
    下载: 导出CSV

    表  3  2种模型的崩滑易发性分区统计表

    Table  3.   Statistics of landslide susceptibility zoning for two models

    评价模型 易发性分区 灾害点个数/个 灾害点占比/% 面积/km2 面积占比/% 灾害点密度/(个·km−2)
    IVM模型极低易发区613.64%1004.265126.56%0.0060
    低易发区24.55%1075.297428.44%0.0019
    中易发区2556.82%1552.766341.07%0.0161
    高易发区511.36%130.14423.44%0.0384
    极高易发区613.64%18.52710.49%0.3239
    IVM-RF耦合模型极低易发区12.27%1830.382148.41%0.0005
    低易发区511.36%1237.899432.74%0.0040
    中易发区1022.73%403.159910.66%0.0248
    高易发区1227.27%261.26716.91%0.0459
    极高易发区1636.36%48.29151.28%0.3313
    下载: 导出CSV

    表  4  志丹县不同概率的月最大降雨量

    Table  4.   Monthly maximum rainfall at different probabilities in Zhidan County

    概率 ϕ 月最大降雨量X=$ \bar{{x}} $(1+ϕCv)/mm
    10 a一遇(10%) 1.33 196.8225485
    20 a一遇(5%) 1.82 215.5319084
    50 a一遇(2%) 2.40 237.6776815
    100 a一遇(1%) 2.81 253.3324520
    下载: 导出CSV

    表  5  危险性等级分级表

    Table  5.   Hazard level classification

    危险性等级 极高危险区 高危险区 中危险区 低危险区 极低危险区
    危险性指数$ {H}_{{\mathrm{i}}} $ >0.7 (0.55,0.7] (0.45,0.55] (0.33,0.45] <0.33
    下载: 导出CSV

    表  6  不同降雨工况下危险性分区统计表

    Table  6.   Hazard zoning statistics under different rainfall conditions 面积/km2

    降雨情况 极低危险区 低危险区 中危险区 高危险区 极高危险区
    10 a一遇 1429.47 1219.17 801.90 300.67 29.80
    20 a一遇 1223.97 1330.22 850.05 326.10 50.65
    50 a一遇 1068.58 1369.08 881.11 376.57 85.66
    100 a一遇 896.72 1327.48 944.21 475.43 137.5
    下载: 导出CSV
  • [1] 谢婉丽,王延寿,马中豪,等. 黄土湿陷机理研究现状及发展趋势[J]. 现代地质,2015,29(2):397-407. doi: 10.3969/j.issn.1000-8527.2015.02.025

    XIE W L,WANG Y S,MA Z H,et al. Research status and prospect of loess collapsibility mechanism[J]. Geoscience,2015,29(2):397-407. (in Chinese with English abstract doi: 10.3969/j.issn.1000-8527.2015.02.025
    [2] 滕宏泉,谢婉丽,盖海龙,等. 分形分维理论在地质灾害发育及空间分布规律中的应用:以长安区滑坡、崩塌地质灾害为例[J]. 地质灾害与环境保护,2016,27(1):44-50. doi: 10.3969/j.issn.1006-4362.2016.01.009

    TENG H Q,XIE W L,GAI H L,et al. Application of fractal dimension theory in geological hazard development and spatial distribution law:Taking Chang’an district landslide and collapse as an example[J]. Journal of Geological Hazards and Environment Preservation,2016,27(1):44-50. (in Chinese with English abstract doi: 10.3969/j.issn.1006-4362.2016.01.009
    [3] 谢婉丽,滕宏泉,杜蕾,等. 大西安地区滑坡分类及其特征分析[J]. 地球环境学报,2018,9(1):79-88. doi: 10.7515/JEE182006

    XIE W L,TENG H Q,DU L,et al. An analysis of landslide classifi cations and characteristics in Xi’an[J]. Journal of Earth Environment,2018,9(1):79-88. (in Chinese with English abstract doi: 10.7515/JEE182006
    [4] 赵欢,田伟平,齐洪亮,等. 陕西公路边坡灾害危险性分区研究[J]. 灾害学,2016,31(4):75-81. doi: 10.3969/j.issn.1000-811X.2016.04.014

    ZHAO H,TIAN W P,QI H L,et al. Research on the risk regionalization of highway slope disasters in Shaanxi Province[J]. Journal of Catastrophology,2016,31(4):75-81. (in Chinese with English abstract doi: 10.3969/j.issn.1000-811X.2016.04.014
    [5] ZHENG H,DING M T. Spatiotemporal changes of landslide susceptibility in response to rainfall and its future prediction:A case study of Sichuan Province,China[J]. Ecological Informatics,2024,84:102862. doi: 10.1016/j.ecoinf.2024.102862
    [6] YUAN X Y,LIU C,NIE R H,et al. A comparative analysis of certainty factor-based machine learning methods for collapse and landslide susceptibility mapping in Wenchuan County,China[J]. Remote Sensing,2022,14(14):3259. doi: 10.3390/rs14143259
    [7] BARREDO J,BENAVIDES A,HERVÁS J,et al. Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin,Gran Canaria Island,Spain[J]. International Journal of Applied Earth Observation and Geoinformation,2000,2(1):9-23. doi: 10.1016/S0303-2434(00)85022-9
    [8] 刘帅,朱杰勇,杨得虎,等. 不同降雨工况条件下的崩滑地质灾害危险性评价[J]. 地质科技通报,2024,43(2):253-267.

    LIU S,ZHU J Y,YANG D H,et al. Geological hazard risk assessment of collapse and landslide under different rainfall conditions[J]. Bulletin of Geological Science and Technology,2024,43(2):253-267. (in Chinese with English abstract
    [9] ALAMREW B T,KASSAWMAR T,MENGSTIE L,et al. Combined GIS,FR and AHP approaches to landslide susceptibility and risk zonation in the Baso Liben district,Northwestern Ethiopia[J]. Quaternary Science Advances,2024,16:100250. doi: 10.1016/j.qsa.2024.100250
    [10] BISWAKARMA P,JOSHI V,ABDO H G,et al. An integrated quantitative and qualitative approach for landslide susceptibility mapping in West Sikkim district,Indian Himalaya[J]. Geomatics,Natural Hazards and Risk,2023,14(1).
    [11] SONG R X,WANG S Z,SONG L F,et al. Landslide susceptibility assessment based on slope unit and information value method in Changbai Mountain district[J]. Journal of Civil and Transportation Engineering,2024,1(2):39-44. doi: 10.62517/jcte.202406207
    [12] BHANDARI B P,DHAKAL S,TSOU C Y. Assessing the prediction accuracy of frequency ratio,weight of evidence,Shannon entropy,and information value methods for landslide susceptibility in the siwalik hills of Nepal[J]. Sustainability,2024,16(5):2092. doi: 10.3390/su16052092
    [13] 邢秋菊,赵纯勇,高克昌,等. 基于GIS的滑坡危险性逻辑回归评价研究[J]. 地理与地理信息科学,2004,20(3):49-51. doi: 10.3969/j.issn.1672-0504.2004.03.011

    XING Q J,ZHAO C Y,GAO K C,et al. Logical regression analysis on the hazard of landslide based on GIS[J]. Geography and Geo-Information Science,2004,20(3):49-51. (in Chinese with English abstract doi: 10.3969/j.issn.1672-0504.2004.03.011
    [14] 许冲,戴福初,姚鑫,等. 基于GIS与确定性系数分析方法的汶川地震滑坡易发性评价[J]. 工程地质学报,2010,18(1):15-26. doi: 10.3969/j.issn.1004-9665.2010.01.003

    XU C,DAI F C,YAO X,et al. GIS platform and certainty factor analysis method based Wenchuan earthquake-induced landslide susceptibility evaluation[J]. Journal of Engineering Geology,2010,18(1):15-26. (in Chinese with English abstract doi: 10.3969/j.issn.1004-9665.2010.01.003
    [15] 李郎平,兰恒星,郭长宝,等. 基于改进频率比法的川藏铁路沿线及邻区地质灾害易发性分区评价[J]. 现代地质,2017,31(5):911-929. doi: 10.3969/j.issn.1000-8527.2017.05.004

    LI L P,LAN H X,GUO C B,et al. Geohazard susceptibility assessment along the Sichuan-Tibet railway and its adjacent area using an improved frequency ratio method[J]. Geoscience,2017,31(5):911-929. (in Chinese with English abstract doi: 10.3969/j.issn.1000-8527.2017.05.004
    [16] KLAI A,KATLANE R,HADDAD R,et al. Landslide susceptibility mapping by frequency ratio and fuzzy logic approach:A case study of Mogods and Hedil (Northern Tunisia)[J]. Applied Geomatics,2024,16(1):91-109. doi: 10.1007/s12518-023-00544-5
    [17] BANDA K,PIETERSEN K,HAMUTOKO J,et al. Using a comparative of DRASTIC and Bayesian weights of evidence approach to assess transboundary aquifer vulnerability in a data scarcity region:Tuli-Karoo aquifer[J]. Journal of Hydrology:Regional Studies,2024,55:101930.
    [18] 李嘉昊,谢婉丽,严明,等. 基于PCA与改进AHP-CRITIC法的地质灾害风险评价研究:以神木市为例[J]. 地球环境学报,2023,14(4):472-487. doi: 10.7515/JEE222051

    LI J H,XIE W L,YAN M,et al. Research on geological hazard risk assessment based on PCA and improved AHP-CRITIC method:A case study of Shenmu,Shaanxi Province[J]. Journal of Earth Environment,2023,14(4):472-487. (in Chinese with English abstract doi: 10.7515/JEE222051
    [19] CHANG L L,ZHANG R,WANG C S. Evaluation and prediction of landslide susceptibility in Yichang section of Yangtze River Basin based on integrated deep learning algorithm[J]. Remote Sensing,2022,14(11):2717. doi: 10.3390/rs14112717
    [20] 樊芷吟,苟晓峰,秦明月,等. 基于信息量模型与Logistic回归模型耦合的地质灾害易发性评价[J]. 工程地质学报,2018,26(2):340-347.

    FAN Z Y,GOU X F,QIN M Y,et al. Information and logistic regression models based coupling analysis for susceptibility of geological hazards[J]. Journal of Engineering Geology,2018,26(2):340-347. (in Chinese with English abstract
    [21] 罗路广,裴向军,黄润秋,等. GIS支持下CF与Logistic回归模型耦合的九寨沟景区滑坡易发性评价[J]. 工程地质学报,2021,29(2):526-535.

    LUO L G,PEI X J,HUANG R Q,et al. Landslide susceptibility assessment in Jiuzhaigou scenic area with GIS based on certainty factor and logistic regression model[J]. Journal of Engineering Geology,2021,29(2):526-535. (in Chinese with English abstract
    [22] ZENG B,CHEN X X. Assessment of shallow landslide susceptibility using an artificial neural network[J]. Arabian Journal of Geosciences,2021,14(6):499. doi: 10.1007/s12517-021-06843-8
    [23] LUCCHESE L V,DE OLIVEIRA G G,PEDROLLO O C. Investigation of the influence of nonoccurrence sampling on landslide susceptibility assessment using Artificial Neural Networks[J]. Catena,2021,198:105067. doi: 10.1016/j.catena.2020.105067
    [24] HAN X M,ZHAO X,WU Y C,et al. A least squares-support vector machine for learning solution to multi-physical transient-state field coupled problems[J]. Engineering Applications of Artificial Intelligence,2024,138:109321.
    [25] ZUO L L,LIU G H,FANG Z,et al. Assessing the destabilization risk of ecosystems dominated by carbon sequestration based on interpretable machine learning method[J]. Ecological Indicators,2024,167:112593. doi: 10.1016/j.ecolind.2024.112593
    [26] MELATI D N,UMBARA R P,ASTISIASARI A,et al. A comparative evaluation of landslide susceptibility mapping using machine learning-based methods in Bogor area of Indonesia[J]. Environmental Earth Sciences,2024,83(3):86. doi: 10.1007/s12665-023-11402-3
    [27] 刘艺梁,殷坤龙,刘斌. 逻辑回归和人工神经网络模型在滑坡灾害空间预测中的应用[J]. 水文地质工程地质,2010,37(5):92-96. doi: 10.3969/j.issn.1000-3665.2010.05.017

    LIU Y L,YIN K L,LIU B. Application of logistic regression and artificial neural networks in spatial assessment of landslide hazards[J]. Hydrogeology & Engineering Geology,2010,37(5):92-96. (in Chinese with English abstract doi: 10.3969/j.issn.1000-3665.2010.05.017
    [28] WANG W,WU G F,SONG X Y. The application of neural networks to comprehensive prediction by seismology prediction method[J]. Acta Seismologica Sinica,2000,13(2):210-215. doi: 10.1007/s11589-000-0012-0
    [29] 田乃满,兰恒星,伍宇明,等. 人工神经网络和决策树模型在滑坡易发性分析中的性能对比[J]. 地球信息科学学报,2020,22(12):2304-2316. doi: 10.12082/dqxxkx.2020.190766

    TIAN N M,LAN H X,WU Y M,et al. Performance comparison of BP artificial neural network and CART decision tree model in landslide susceptibility prediction[J]. Journal of Geo-Information Science,2020,22(12):2304-2316. (in Chinese with English abstract doi: 10.12082/dqxxkx.2020.190766
    [30] SHAHIN A M ,JAKSA B M ,MAIER R H . Artificial neural network applications in geotechnical engineering[J]. Australian Geomechanics,2001,36(1):49-62.
    [31] 黄发明,殷坤龙,蒋水华,等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报,2018,37(1):156-167.

    HUANG F M,YIN K L,JIANG S H,et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(1):156-167. (in Chinese with English abstract
    [32] RIAZ M T,RIAZ M T,REHMAN A,et al. An integrated approach of support vector machine (SVM) and weight of evidence (WOE) techniques to map groundwater potential and assess water quality[J]. Scientific Reports,2024,14:26186. doi: 10.1038/s41598-024-76607-3
    [33] GAO X C,BAI W T,DANG Q L,et al. Learnable self-supervised support vector machine based individual selection strategy for multimodal multi-objective optimization[J]. Information Sciences,2025,690:121553. doi: 10.1016/j.ins.2024.121553
    [34] 马志江,陈汉林,杨树锋. 基于支持向量机理论的滑坡灾害预测:以浙江庆元地区为例[J]. 浙江大学学报(理学版),2003,30(5):592-596. doi: 10.3321/j.issn:1008-9497.2003.05.027

    MA Z J,CHEN H L,YANG S F. Prediction of landslide hazard based on support vector machine theory:A case study of Qingyuan area in Zhejiang Province[J]. Journal of Zhejiang University (Sciences Edition),2003,30(5):592-596. (in Chinese with English abstract doi: 10.3321/j.issn:1008-9497.2003.05.027
    [35] ZHU Y T,GU C S,DIACONEASA M A. A missing data processing method for dam deformation monitoring data using spatiotemporal clustering and support vector machine model[J]. Water Science and Engineering,2024,17(4):417-424. doi: 10.1016/j.wse.2024.08.003
    [36] 郭衍昊,窦杰,向子林,等. 基于优化负样本采样策略的梯度提升决策树与随机森林的汶川同震滑坡易发性评价[J]. 地质科技通报,2024,43(3):251-265.

    GUO Y H,DOU J,XIANG Z L,et al. Susceptibility evaluation of Wenchuan coseismic landslides by gradient boosting decision tree and random forest based on optimal negative sample sampling strategies[J]. Bulletin of Geological Science and Technology,2024,43(3):251-265. (in Chinese with English abstract
    [37] BREIMAN L. Random Forests.[J]. Machine Learning,2001,45(1):5-32. doi: 10.1023/A:1010933404324
    [38] 李苍柏,肖克炎,李楠,等. 支持向量机、随机森林和人工神经网络机器学习算法在地球化学异常信息提取中的对比研究[J]. 地球学报,2020,41(2):309-319. doi: 10.3975/cagsb.2020.022501

    LI C B,XIAO K Y,LI N,et al. A comparative study of support vector machine,random forest and artificial neural network machine learning algorithms in geochemical anomaly information extraction[J]. Acta Geoscientica Sinica,2020,41(2):309-319. (in Chinese with English abstract doi: 10.3975/cagsb.2020.022501
    [39] 刘磊. 三峡水库万州区库岸滑坡灾害风险评价研究[D]. 武汉:中国地质大学,2016.

    LIU L. Assessment of landslide risk along Wanzhou area in three gorges reservoir[D]. Wuhan:China University of Geosciences,2016. (in Chinese with English abstract
    [40] 严明,谢婉丽,何亚南,等. 基于极值降雨假设法的城镇地质灾害风险性评价耦合模型研究:以安康市岚皋县官元镇为例[J]. 灾害学,2023,38(4):219-227. doi: 10.3969/j.issn.1000-811X.2023.04.034

    YAN M,XIE W L,HE Y N,et al. Research on the coupling model of urban geological hazard risk assessment based on the assumption of extreme rainfall:A case study of Guanyuan Town,Langao County,Ankang City[J]. Journal of Catastrophology,2023,38(4):219-227. (in Chinese with English abstract doi: 10.3969/j.issn.1000-811X.2023.04.034
    [41] 汤国安. 地理信息系统教程[M]. 2版. 北京:高等教育出版社,2019.

    TANG G A. Gis Tutorial [M]. Beijing:Higher Education Press,2019. (in Chinese)
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-08
  • 录用日期:  2024-12-23
  • 修回日期:  2024-12-21
  • 网络出版日期:  2025-04-25

目录

    /

    返回文章
    返回