留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

降雨型花岗岩残积土滑坡碎屑流运动过程分析:以湖北黄梅县袁山村为例

朱颖 甘建军 鹿淇瑞 邓怡武 邓坤

朱颖,甘建军,鹿淇瑞,等. 降雨型花岗岩残积土滑坡碎屑流运动过程分析:以湖北黄梅县袁山村为例[J]. 地质科技通报,2025,44(3):268-279 doi: 10.19509/j.cnki.dzkq.tb20240564
引用本文: 朱颖,甘建军,鹿淇瑞,等. 降雨型花岗岩残积土滑坡碎屑流运动过程分析:以湖北黄梅县袁山村为例[J]. 地质科技通报,2025,44(3):268-279 doi: 10.19509/j.cnki.dzkq.tb20240564
ZHU Ying,GAN Jianjun,LU Qirui,et al. Analysis of rainfall induced-movement of landslide debris flows in granite residual soil: A case study of Yuanshan Village, Huangmei County, Hubei Province[J]. Bulletin of Geological Science and Technology,2025,44(3):268-279 doi: 10.19509/j.cnki.dzkq.tb20240564
Citation: ZHU Ying,GAN Jianjun,LU Qirui,et al. Analysis of rainfall induced-movement of landslide debris flows in granite residual soil: A case study of Yuanshan Village, Huangmei County, Hubei Province[J]. Bulletin of Geological Science and Technology,2025,44(3):268-279 doi: 10.19509/j.cnki.dzkq.tb20240564

降雨型花岗岩残积土滑坡碎屑流运动过程分析:以湖北黄梅县袁山村为例

doi: 10.19509/j.cnki.dzkq.tb20240564
基金项目: 国家自然科学基金项目(42162025);2021年度浙江省山体地质灾害防治协同创新中心开放基金项目(2PCMGH-2021-02);江西省科技重点研发计划项目(20203BBGL73220)
详细信息
    作者简介:

    朱颖:E-mail:2023314001@nit.edu.cn

    通讯作者:

    E-mail:ganjianjun@nit.edu.cn

  • 中图分类号: P642.22

Analysis of rainfall induced-movement of landslide debris flows in granite residual soil: A case study of Yuanshan Village, Huangmei County, Hubei Province

More Information
  • 摘要:

    湖北黄梅县袁山村滑坡碎屑流是花岗岩残积土滑坡碎屑流,受地质条件影响,其运动过程较为复杂,突发性强。为研究中低山区花岗岩残积土滑坡碎屑流动力机制,分析降雨型花岗岩残积土滑坡碎屑流的运动过程,通过野外地质调查,利用无人机航拍(unmanned aerial vehicle,简称UAV)、遥感影像形成的数字地表模型(digital elevation model,简称DEM)、现场勘查及地质资料分析、数值模拟等方法对滑坡碎屑流进行运动过程分析。结果表明,滑坡碎屑流的运动过程中最大堆积厚度为6 m,在t=20 s时达到运动峰值17 m/s,而实际运动峰值应当更大,出现在滑源区开始失稳的阶段,整个运动过程分为3个阶段:0~30 s为滑坡碎屑流失稳启动阶段,在一级平台加速;30~70 s受地形影响,滑动体进行二次加速并发生部分偏转运动,冲毁袁山村的建筑物;70~130 s为减速堆积阶段,掩埋和堆积了建筑物。本研究可为类似滑坡碎屑流的防治提供参考。

     

  • 图 1  袁山村滑坡碎屑流区三维地形图(a)和平面示意图(b)

    Figure 1.  Three-dimensional topographic map (a) and plan (b) of the Yuanshan Village landslide debris flow area

    图 2  袁山村滑坡碎屑流变形分区

    A. 滑源区;B. 冲击区;C. 加速区;D. 堆积区;Ⅰ. 上方不稳定区;Ⅱ-1. 右岸不稳定区;Ⅱ-2. 左岸不稳定区

    Figure 2.  Deformation zones of Yuanshan Village landslide debris flow

    图 3  袁山村滑坡碎屑流剖面图(Q4del. 滑坡堆积层;ηr53. 燕山晚期二长花岗岩;下同)

    Figure 3.  Profile of landslide debris flow in Yuanshan Village

    图 4  研究区滑坡的几个关键地形与微地貌

    Figure 4.  Several key terrains and micro landforms of landslide in the study area

    图 5  研究区滑坡过程的速度变化曲线

    Figure 5.  Velocity variation curve of landslide process of the study area

    图 6  袁山村滑坡碎屑流附近雨量站记录的日降雨量和月累计降雨量

    Figure 6.  Daily rainfall and monthly cumulative rainfall in the Yuanshan Village landslide debris flow

    图 7  袁山村滑坡碎屑流数值模拟模型

    Figure 7.  Numerical model of Yuanshan Village landslide debris flow

    图 8  袁山村滑坡碎屑流堆积物厚度随时间演化图

    Figure 8.  Thickness evolution of the flow deposits of Yuanshan Village landslide debris flow

    图 9  袁山村滑坡碎屑流运动速度随时间演化图

    Figure 9.  Evolution of runout velocity of Yuanshan Village landslide debris flow

    图 10  监测点布置图

    Figure 10.  Layout of monitoring points

    图 11  监测点处滑坡碎屑流体的运动速度变化情况

    Figure 11.  Velocity variations of the landslide debris flow at monitoring points

    表  1  袁山村滑坡碎屑流7个分区的主要参数

    Table  1.   Main parameters of the seven zones in Yuanshan Village landslide debris flow

    分区 长度/m 宽度/m 深度/m 厚度/m 坡度/(°) 面积/m2 体积/m3
    A(滑源区) 130 200~265 52~62 0~4.0 32~35 0.65×104 2.4×104
    B(冲击区) 160 120~200 50~62 4~6.0 42 0.88×104 4.4×104
    C(加速区) 80 85~200 50~93 1~5.0 35~45 0.89×104 2.2×104
    D(堆积区) 238 65~85 93~168 1~6.0 2~3 1.80×104 5.4×104
    Ⅰ(上方不稳定区) 265 120~220 55~185 0~3.0 33~42 3.50×104 7.0×104
    Ⅱ-1(右岸不稳定区) 170 200~265 65~136 2~6.0 22~72 1.79×104 5.4×104
    Ⅱ-2(左岸不稳定区) 163 115~200 20~136 1~8.0 5~40 1.82×104 6.0×104
    下载: 导出CSV

    表  2  研究区花岗岩残积土试样物理力学参数试验结果

    Table  2.   Experimental Results of Physical and Mechanical Parameters of Granite Residual Soil of the study area

    试样
    序号
    含水率/
    %
    湿密度/
    %
    液限/
    %
    塑限/
    %
    饱和度/
    %
    内黏聚
    力/kPa
    内摩擦
    角/(°)
    S1 34.2 1.96 33.5 20.8 93.4 13.6 14.5
    S2 36.8 1.84 35.3 25.8 84.8 14.3 16.2
    S3 34.2 1.87 34.8 21.5 70.8 17.8 24.3
    S4 32.6 2.00 32.7 20.5 94.8 22.2 25.4
    S5 35.3 1.92 29.3 19.8 91.4 23.5 17.3
    S6 40.6 1.93 41.2 25.5 99.5 23.3 18.2
    下载: 导出CSV

    表  3  Voellmy模型选取参数

    Table  3.   Parameters of the Voellmy Model

    平均密度/(kg·m−3 摩擦系数 黏聚力/kPa 运行总时长/s
    2000 0.43 15 130
    下载: 导出CSV
  • [1] 王维早,许强,郑光,等. 强降雨诱发缓倾堆积层边坡失稳离心模型试验研究[J]. 岩土力学,2016,37(1):87-95.

    WANG W Z,XU Q,ZHENG G,et al. Centrifugal model tests on sliding failure of gentle debris slope under rainfall[J]. Rock and Soil Mechanics,2016,37(1):87-95. (in Chinese with English abstract
    [2] 吴李泉,张锋,凌贤长,等. 强降雨条件下浙江武义平头村山体高边坡稳定性分析[J]. 岩石力学与工程学报,2009,28(6):1193-1199.

    WU L Q,ZHANG F,LING X Z ,et al. Stability analysis of high slope subjected to heavy rainfall in Pingtou Village of Wuyi County,Zhejiang Province[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(6):1193-1199. (in Chinese with English abstract
    [3] YAN Y J,TU N,CEN L P,et al. Characteristics and dynamic mechanism of rill erosion driven by extreme rainfall on karst plateau slopes,SW China[J]. Catena,2024,238:107890. doi: 10.1016/j.catena.2024.107890
    [4] ERING P,SIVAKUMAR BABU G L. Probabilistic back analysis of rainfall induced landslide:A case study of Malin landslide,India[J]. Engineering Geology,2016,208:154-164. doi: 10.1016/j.enggeo.2016.05.002
    [5] YUNUS A P,FAN X M,SUBRAMANIAN S S,et al. Unraveling the drivers of intensified landslide regimes in western Ghats,India[J]. Science of The Total Environment,2021,770:145357. doi: 10.1016/j.scitotenv.2021.145357
    [6] GELORMINI M,GRIPENBERG M,MARKE D,et al. Coverage survey and lessons learned from a pre-emptive cholera vaccination campaign in urban and rural communities affected by landslides and floods in Freetown Sierra Leone[J]. Vaccine,2023,41(14):2397-2403. doi: 10.1016/j.vaccine.2023.01.026
    [7] KUO Y S,TSAI Y J,CHEN Y S,et al. Movement of deep-seated rainfall-induced landslide at Hsiaolin Village during typhoon morakot[J]. Landslides,2013,10(2):191-202. doi: 10.1007/s10346-012-0315-y
    [8] ZHAN Q H,WANG S M,WANG L,et al. Analysis of failure models and deformation evolution process of geological hazards in Ganzhou City,China[J]. Frontiers in Earth Science,2021,9:731447. doi: 10.3389/feart.2021.731447
    [9] QI X,LI Q H,JIAO Y Y,et al. Experimental study on response law and failure process of slopes in fully weathered granites under precipitation infiltration[J]. Environmental Earth Sciences,2021,80(20):685. doi: 10.1007/s12665-021-09995-8
    [10] 刘红军,武闻禹,耿林,等. 全风化花岗岩滑坡稳定性与降雨关系分析[J]. 防灾减灾工程学报,2024,44(2):322-332.

    LIU H J,WU W Y,GENG L,et al. Analysis of the relationship between stability of fully weathered granite landslides and rainfall[J]. Journal of Disaster Prevention and Mitigation Engineering,2024,44(2):322-332. (in Chinese with English abstract
    [11] 李钰,陈明亮,黄会宝,等. 新华滑坡变形演化规律与预警判据[J]. 地质科技通报,2024,43(3):227-239.

    LI Y,CHEN M L,HUANG H B,et al. Deformation evolution law and early warning criterion of Xinhua landslide[J]. Bulletin of Geological Science and Technology,2024,43(3):227-239. (in Chinese with English abstract
    [12] 张学臣. 基于渗流应力耦合的降雨型堆积层滑坡稳定性评价[J]. 工业建筑,2023,53(增刊1):508-512.

    ZHANG X C. Stability evaluation of rainfall-type accumulation landslide based on seepage stress coupling[J]. Industrial Construction,2023,53(S1):508-512. (in Chinese).
    [13] 张磊,刘岁海,顾彩玉,等. 基于FLAC3D软件的降雨型滑坡稳定性分析[J]. 中国水土保持,2023(5):53-57. doi: 10.3969/j.issn.1000-0941.2023.05.020

    ZHANG L,LIU S H,GU C Y,et al. Stability analysis of rainfall induced landslides based on FLAC3D software[J]. Soil and Water Conservation in China,2023(5):53-57. (in Chinese with English abstract doi: 10.3969/j.issn.1000-0941.2023.05.020
    [14] 兰腾达. 基于FLAC 3D数值分析的福安白莲寺降雨型滑坡稳定性评价[J]. 福建地质,2025,44(1):61-68.

    LAN T D. Stability evaluation of Bailian temple landslide in Fu'an City based on FLAC 3D[J]. Geology of Fujian,2025,44(1):61-68. (in Chinese with English abstract
    [15] CHEN Z,SONG D Q. Numerical investigation of the recent Chenhecun landslide (Gansu,China) using the discrete element method[J]. Natural Hazards,2021,105(1):717-733. doi: 10.1007/s11069-020-04333-w
    [16] 田仁珺. 基于PFC3D的庞家湾滑坡运动过程模拟研究[J]. 江西建材,2024(6):205-209. doi: 10.3969/j.issn.1006-2890.2024.06.086

    TIAN R J. Simulation of motion process of pangjiawan landslide based on PFC3D[J]. Jiangxi Building Materials,2024(6):205-209. (in Chinese with English abstract doi: 10.3969/j.issn.1006-2890.2024.06.086
    [17] GUO J,CUI Y F,XU W J,et al. Numerical investigation of the landslide-debris flow transformation process considering topographic and entrainment effects:A case study[J]. Landslides,2022,19(4):773-788. doi: 10.1007/s10346-021-01791-6
    [18] 庞海松,谢骏锦,张小明,等. 基于RAMMS数值模拟的短时强降雨型泥石流危险性评价[J]. 地质科技通报,2024,43(2):215-225.

    PANG H S,XIE J J,ZHANG X M,et al. Hazard assessment of debris flow induced by short-time heavy rainfall based on RAMMS numerical simulation[J]. Bulletin of Geological Science and Technology,2024,43(2):215-225. (in Chinese with English abstract
    [19] FAN X M,YANG F,SIVA SUBRAMANIAN S,et al. Prediction of a multi-hazard chain by an integrated numerical simulation approach:The Baige landslide,Jinsha River,China[J]. Landslides,2020,17(1):147-164. doi: 10.1007/s10346-019-01313-5
    [20] JABOYEDOFF M,CARREA D,DERRON M H,et al. A review of methods used to estimate initial landslide failure surface depths and volumes[J]. Engineering Geology,2020,267:105478. doi: 10.1016/j.enggeo.2020.105478
    [21] LUCAS A ,MANGENEY A ,MÈGE D,et al. Influence of the scar geometry on landslide dynamics and deposits:Application to Martian landslides[J]. Journal of Geophysical Research:Planets,2011,116(E10).
    [22] SCHEIDEGGER A E. On the prediction of the reach and velocity of catastrophic landslides 2F,1T,14R[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1974,11(3):65.
    [23] SANDEEP C S,HE H,SENETAKIS K. Experimental and analytical studies on the influence of weathering degree and ground-environment analog conditions on the tribological behavior of granite[J]. Engineering Geology,2022,304:106644. doi: 10.1016/j.enggeo.2022.106644
    [24] PRADHAN A M S,KIM Y T. Relative effect method of landslide susceptibility zonation in weathered granite soil:A case study in Deokjeok-ri Creek,South Korea[J]. Natural Hazards,2014,72(2):1189-1217. doi: 10.1007/s11069-014-1065-z
    [25] 唐辉明. 重大滑坡预测预报研究进展与展望[J]. 地质科技通报,2022,41(6):1-13.

    TANG H M. Advance and prospects of major landslides prediction and forecasting[J]. Bulletin of Geological Science and Technology,2022,41(6):1-13. (in Chinese with English abstract
    [26] 吴善百. 广西东南部花岗岩残积土降雨型滑坡的起动机理研究[D]. 南宁:广西大学,2020.

    WU S B. Study on the initiation mechanism of rainfall-induced landslide of granite residual soil in southeast Guangxi[D]. Nanning:Guangxi University,2020. (in Chinese with English abstract
    [27] BOGAARDI T,GUGLIELMI Y,MARC V,et al. Hydrogeochemistry in landslide research:A review[J]. Bulletin de la Societe Geologique de France,2007,178(2):113-126. doi: 10.2113/gssgfbull.178.2.113
    [28] LIU H H,YU P,LU H T,et al. Experimental study on disaster mechanism of completely weathered granite landslide induced by extreme rainfall[J]. Geoenvironmental Disasters,2023,10(1):5. doi: 10.1186/s40677-023-00234-9
    [29] 陈慧娟,邹浩,訚遥,等. 持续强降雨影响下黄梅县袁山村三组滑坡破坏特征与成因分析[J]. 华南地质,2023,39(3):482-491. doi: 10.3969/j.issn.2097-0013.2023.03.007

    CHEN H J,ZOU H,YIN Y,et al. Analysis of characteristics and causes of landslide damage in group 3 of Yuanshan Village,Huangmei County under the influence of continuous heavy rainfall[J]. South China Geology,2023,39(3):482-491. (in Chinese with English abstract doi: 10.3969/j.issn.2097-0013.2023.03.007
    [30] SUN Y L,LIU Q X,XU H S,et al. Influences of different modifiers on the disintegration of improved granite residual soil under wet and dry cycles[J]. International Journal of Mining Science and Technology,2022,32(4):831-845. doi: 10.1016/j.ijmst.2022.05.003
    [31] YE P,YU B,CHEN W H,et al. Rainfall-induced landslide susceptibility mapping using machine learning algorithms and comparison of their performance in Hilly area of Fujian Province,China[J]. Natural Hazards,2022,113(2):965-995. doi: 10.1007/s11069-022-05332-9
    [32] ZHANG J J,QIU H J,TANG B Z,et al. Accelerating effect of vegetation on the instability of rainfall-induced shallow landslides[J]. Remote Sensing,2022,14(22):5743. doi: 10.3390/rs14225743
    [33] 王钟文. 基于动力过程的山区小流域泥石流灾害风险评估研究[D]. 成都:成都理工大学,2020.

    WANG Z W. Hazard and risk assessment for debris flows in small watershed in mountainous area based on dynamic process[D]. Chengdu:Chengdu University of Technology,2020. (in Chinese with English abstract
    [34] 宋德光,吴瑞安,马德芹,等. 四川泸定昔格达组滑坡灾害运动过程模拟分析[J]. 地质通报,2023,42(12):2185-2197. doi: 10.12097/j.issn.1671-2552.2023.12.014

    SONG D G,WU R A,MA D Q,et al. Simulation analysis of landslide disaster movement process in Xigeda Formation,Luding County,Sichuan Province[J]. Geological Bulletin of China,2023,42(12):2185-2197. (in Chinese with English abstract doi: 10.12097/j.issn.1671-2552.2023.12.014
    [35] 熊朝正,吉锋,石豫川. 基于Massflow模型的青龙沟台风暴雨型泥石流运动特征研究[J]. 人民珠江,2023,44(3):17-22.

    XIONG C Z,JI F,SHI Y C. Movement characteristics of typhoon rainstorm-triggered debris flow in Qinglong Gully based on massflow model[J]. Pearl River,2023,44(3):17-22. (in Chinese with English abstract
    [36] 冉林,马鹏辉,彭建兵,等. 甘肃黑方台“10·5” 黄土滑坡启动及运动特征分析[J]. 中国地质灾害与防治学报,2022,33(6):1-9.

    RAN L,MA P H,PENG J B,et al. The initiation and motion characteristics of the “10·5” loess landslide in the Heifangtai platform,Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):1-9. (in Chinese with English abstract
    [37] 殷邦民. 尼续村高速远程滑坡流态化堆积与运动学特征研究[D]. 成都:西南交通大学,2020.

    YIN B M. The research on rheological properties of landform and kinematics of nyixoi chongco rock avalanche[D]. Chengdu:Southwest Jiaotong University,2020. (in Chinese with English abstract
    [38] 石子健,陈稳,盛逸凡,等. 碎屑流滑坡变形及运动特征研究:以恩施市沙子坝滑坡为例[J]. 水文地质工程地质,2025,52(1):149-158.

    SHI Z J,CHEN W,SHENG Y F,et al. Deformation and movement characteristics of debris flow landslide:A case study of the Shaziba landslide in Enshi,China[J]. Hydrogeology & Engineering Geology,2025,52(1):149-158. (in Chinese with English abstract
    [39] 袁锦涛,韩培锋,欧小红,等. 基于DEM的滑坡碎屑流运动堆积特性研究[J]. 自然灾害学报,2023,32(3):230-238.

    YUAN J T,HAN P F,OU X H,et al. Study of the accumulation characteristics of landslide debris flow movement based on DEM[J]. Journal of Natural Disasters,2023,32(3):230-238. (in Chinese with English abstract
    [40] 丁邦政. 基于GIS和Massflow仿真的尾矿库溃坝危害下的桥梁风险评估[D]. 武汉:华中科技大学,2019.

    DING B Z. Bridge risk assessment under tailings dam failure hazard with GIS and massflow simulation[D]. Wuhan:Huazhong University of Science and Technology,2019. (in Chinese with English abstract
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  75
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-29
  • 录用日期:  2025-02-14
  • 修回日期:  2024-12-01
  • 网络出版日期:  2025-04-28

目录

    /

    返回文章
    返回